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Abstract

This paper explores optimal treatment of an SIS (Susceptible-Infected-
Susceptible) disease that has two strains with different infectivities. When
we assume that neither eradication nor full infection are possible, it is
shown that there are two categories of equilibria. First, there are two
continua of interior equilibria characterised by a fixed, positive total level
of infection, where both strands of the disease prevail. Second, there are
two sets of equilibria where one strand of the disease is eradicated asymp-
totically. The feasibility of equilibria depends on parameter assumptions;
a combination of low natural rate of recovery and large difference between
infectivities renders the interior equilibria and one of the asymptotic equi-
libria infeasible. Optimal policy under different parameter assumptions is
analysed by means of simulations.
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1 Introduction

Epidemiology, as it is studied today, originated in the early 20th century and
has since developed into a multi-faceted field that combines the skills of mathe-
maticians, biologists and, most recently, economists. One predominant area of
epidemiology focuses on transmission system models. These models are built on
differential equations that describe the evolution of disease prevalence over time
as a function of parameters. Often a point of criticism, these models assume
homogeneous mixing within populations, identical agents and no behavioural
adaptation. Although this produces the benefit of parsimony, allowing signif-
icant predictive power and the ability to work with data, there is a strand of
the literature that argues this simplicity comes at the price of applicability (Ep-
stein 2009). Nevertheless, few advances have been made in other approaches to
epidemiology that have received the backing that these types of models have.
In the standard Susceptible-Infected-Susceptible (SIS) model and its numer-

ous permutations, the probability of an individual catching a disease when he
encounters an infected person depends on an exogenous infectivity or transmis-
sion parameter. This parameter is predominantly assumed to be homogeneous,
a simplification that does not allow for policy differentiation if there exist sev-
eral strands of the infection. Infections in reality are frequently present in more
than one form. To motivate an infection stratified by transmission parameter,
consider the case of influenza as an example. Influenza has several strands and
some strands are more infectious than others; typically, strains that originate in
humans are more infectious than those that originate in other animals, such as
birds. How does a policymaker deal with the presence of several variants of the
infection in the population? Supposing she can differentiate policy by infection
type, does she treat the more infectious or less infectious first? What is the
prevalence of the different infection strands in equilibrium?
The goal of this paper is to explore an SIS model with two infection strains

and answer these important policy questions. This paper shows that this model
has two categories of steady state. First, there are two continuum of steady
states where both infection strains prevail. Second, there are asymptotic equi-
libria where one of the strains is eliminated asymptotically, while the other is
endemic. Under certain parameter assumptions, it is optimal to asymptotically
eliminate the less infectious strand while allowing the high infectivity strand to
prevail. This interesting case is explored by way of simulations, where optimality
under fixed policy and variable policy is explored. The role of cost of treatment
in governing optimal policy is explored in detail. The rest of the paper is struc-
tured as follows. Section 2 reviews the relevant literature. Section 3 introduces
the basic model and Section 4 develops the model to encompass two infection
types. Section 5 provides examples of simulations. Section 6 concludes.

2



2 Relevant literature

The literature on epidemiological modelling is primarily found in the mathe-
matical and biological fields. Variations on standard epidemiological models are
common in the mathematical literature in particular, where researchers detail
dynamics and equilibria but do not look at optimality and intervention. In
direct relevance to this paper, Castillo-Chavez, Huang and Li (1999) develop
an SIS model with a two-strand disease where individuals are genetically pre-
disposed to a specific strand. They derive stability conditions on the various
equilibria of the model, which include boundary (one or both strands eradi-
cated) and coexistence (both strands prevail) equilibria. These are equilibria
the system tends towards when left on its own. Hyman and Li (1997) analyse
an SIS STD model with multiple groups where interaction between groups is
behaviourally variable and depends on prevalence levels in the different groups.
The development of the infection is complex and depends on how these inter-
actions take place; individuals may reduce their contacts with individuals in
high prevalence groups, which may reduce overall prevalence. However, this is
not guaranteed. The biological literature primarily applies existing models to
data and attempts to model the evolution of specific diseases. In relation to the
present study, the mathematical epidemiology literature is most relevant. This
paper develops a mathematical model akin to those studied by mathematical
epidemiologists, while simultaneously introducing the economic consideration of
optimal intervention.
Economic research into epidemiology is scant but fast-growing. Research

has focused on three main areas: behavioural response, spatial analyses and em-
pirical work. Modelling behaviour is tackled by some of the literature. Agents
make decisions about risky and preventative behaviours as a function of per-
ceived risks of contracting infections. Philipson and Posner (1993) introduce an
expected-utility model of STDs where agents evaluate whether or not to use pro-
tection in sexual activity based on perceived probabilities of being infected and
the partner being infected. They examine the idea that epidemiological models
predict incidence will rise without bound until all individuals are infected, while
economic models predict that incidence first rises then falls, once risky activities
become too costly. There may even be a threshold prevalence level after which
risky activities are again increasingly demanded due to "fatalistic" beliefs.
Geoffard and Philipson (1996) use data from the San Francisco Men’s Health

Study to support the idea that behaviour responds to prevalence levels. Kremer
(1996) looks at behavioural choices made by individuals about how many part-
ners to have relations with depending on observed infection prevalence rates.
The model shows that increased prevalence could lead to even worse prevalence
rates due to unfavourable behavioural responses. Building on these findings,
Auld (2006) examines changes in risky sexual behaviour in response to changes
in local HIV prevalence using the San Francisco study of the 1980s. His re-
sults are consistent with Kremer’s theoretical predictions. Auld estimates a 5%
reduction in the rate of partner change in response to a 10% increase in preva-
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lence. Another approach is to examine the role of agents’ beliefs in partner
and relationship choice. Greenwood et al (2010) examine individuals’decisions
on whether to engage in different types of relationships, using a beliefs-based
model that is parameterised to data on Malawi. A significant amount of liter-
ature addresses the role of behavioural response in epidemiology, with broadly
consistent findings that behaviour is prevalence-dependent.
Several extensions can be made to basic epidemiology models that look

at aspects other than behaviour. Spatial considerations are a primary factor.
Rowthorn, Laxminarayan and Gilligan (2009) focus on the spatial dynamics of
disease. They answer the question of optimal control of infections via treatment
in the case of metapopulations, defined as subpopulations within a population
that mix at a lower rate than individuals within each subpopulation. Although
intuition may suggest that equalising infection rates across subpopulations leads
to the highest level of welfare, this turns out to be the worst possible solution.
Another policy-relevant aspect is the role of budget constraints. Rowthorn
(2004) examines this in the context of optimal control of a disease using treat-
ment. Funds should never be retained as long as there are people that can be
treated.
Significant empirical work has been carried out on infectious disease. Several

studies have been carried out aiming to verify the responsiveness of sexual be-
haviour to changes in perceived risk of contracting infections such as HIV/AIDS.
St. Lawrence et al (1991) look at differences in risky behaviour across two cities
with different prevalence rates. They find startling differences with risky behav-
iour being as much as three times more common in the low-prevalence city as
compared to the high-prevalence city. Similarly, Dupas (2005) looks at whether
a public health information program that teaches teenagers about relative risks
of contracting HIV/AIDS depending on partner age group has an effect on their
behaviour. Dupas finds that the information campaign reduces childbearing by
1.7% in the treatment group, representing a 31% decrease in childbearing. In
terms of age group, there is a reduction in cross-generational pregnancies of
65%.
Oster (2005) provides a detailed simulation-based analysis on the effects of

changes in transmission rates and partner choice on national HIV/AIDS preva-
lence levels. Using actual transmission rates and sexual behaviour parameters,
the paper predicts an HIV/AIDS infection prevalence of 0.23% in the United
States and 12.7% in Africa, close to actual prevalence rates of 0.15% and 11.9%.
Estimates are then carried out using US sexual behaviour parameters but Sub-
Saharan African transmission rates. This results in an estimated prevalence rate
of over 11% for the United States, suggesting that it is the transmission rate
that is driving the higher HIV/AIDS prevalence rates observed in Africa when
compared to the United States. This shows that the transmission rate is an
important predictor of prevalence levels and should be measured as accurately
as possible.
The economic literature has focused on behaviour, spatial factors and em-

pirical studies. Although these are not the focus of the present study, existing
studies are useful to bear in mind as they have important intuition and ideas
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that may become relevant here.

3 The basic SIS model

3.1 Overview

It has become standard in the economic epidemiology literature to assume ran-
dom mixing between individuals, despite the large literature on the importance
of behavioural response. The basic SIS model with treatment is derived under
the assumption of random mixing in Section 3.1, following Rowthorn (2004) and
Goldman and Lightwood (2002). This basic model also assumes a homogeneous
transmission parameter. This assumption does not provide an accurate repre-
sentation of the way disease spreads when it exists in different forms. Indeed,
awareness of the improved predictions resulting from accurate transmission pa-
rameters has been raised by Oster (2005). These observations provide the im-
petus for an extension to the basic SIS model, which is presented in Section
4.
We begin by examining the standard SIS model. The model is in continuous

time. There are two possible states: individuals are susceptible (proportion S
of the total population) or infected (proportion I). They can move between the
two states an unlimited number of times. Agents are homogeneous and the pop-
ulation is closed. Perfect or homogeneous mixing is assumed between agents,
with a uniform transmission probability (β). A proportion f of infected individ-
uals is treated, with the success rate of treatment (which can be interpreted as a
rate of recovery) given by the parameter α. There is also the possibility of spon-
taneous or natural recovery, at rate τ . The evolution of the two populations,
susceptible and infected, is described by the following differential equations:

İ(t) = I(t)S(t)β − I(t)(f(t)α+ τ), (1)

Ṡ(t) = I(t)(f(t)α+ τ)− I(t)S(t)β. (2)

This type of model has been studied for decades by mathematical and bi-
ological epidemiologists. The economic approach to epidemiology has focused
on two different adjustments to this model: adding an objective function, and
introducing behavioural response. Behavioural response is not considered here.
Instead, we focus on optimal policy via the introduction of an objective func-
tion. Objective functions can take many forms, from a social planner’s welfare
maximisation function, to an individual’s utility maximisation function. There
is also the possibility of cost minimisation, prevalence minimisation, and so on
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and so forth. One natural objective function to add to this model is social wel-
fare, determined by the proportion of infected and susceptible individuals and
the expenditure on treatment:

W =

∫ ∞
0

e−δt[pN(1− I(t))− cf(t)I(t)]dt. (3)

In this simple case, infected individuals have a value of zero while susceptible
individuals have a value of p; treatment has a constant marginal cost of c per
instant per individual. The problem is solved as a Hamiltonian optimal control
problem, normalising population to 1: S(t)+ I(t) = N = 1 for all t. This allows
(1) and (2) to collapse to one constraint.
It is assumed that

f ∈ [0, 1]

I(0) = I0 > 0 given

The current value Hamiltonian function is

H = p(1− I)− cfI + γI((1− I)β − fα− τ) (4)

where γ is the shadow price of infection. Differentiating the Hamiltonian
with respect to the control variable gives us the solution, which is of "bang-
bang" form as the control enters the problem in linear fashion:

f∗

 = 0
∈ (0, 1)

= 1

 if γ∗

>=
<

− c

α
. (5)

Policy can either be at an interior level f∗ ∈ (0, 1), or at a boundary level,
f∗ = 0 or 1. The interpretation is as follows. The multiplier is the shadow price
of another infected individual. The higher is this shadow price in absolute terms,
the more costly it is to social welfare to have an additional infected person. On
the other hand, cα is the relative price of treating an infected individual - it is the
ratio of cost to treatment effectiveness. Bearing in mind that the Hamiltonian
condition compares the shadow price to the negative of the price of treatment,
it is clear that if the price of infection exceeds the price of treatment, everyone
is treated. Similarly, when the price of treatment is higher than the price of
infection, no one is treated. When they are equal, any interior level of treatment
is optimal subject to parameters. The equation of motion for the multiplier is
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γ̇ = δγ − ∂H

∂I
= p+ cf − γ((1− 2I)β − fα− τ − δ). (6)

Let us examine the cases of interior and boundary policies more closely.

3.2 Policy is interior

For an interior policy to be optimal, the Hamiltionian conditions require that
γ = − c

α . Differentiating this gives us γ̇(t) = 0. Further, it must be that İ(t) = 0
if we are in steady state. These three conditions give us steady state solutions
I = I∗, γ = γ∗ and f = f∗:

I∗ =
αp+ c(β − δ − τ)

2cβ
, (7)

f∗ =
c(β + δ − τ)− αp

2cα
, (8)

γ∗ = − c
α
. (9)

Thus, a path with interior policy has I = I∗, γ = γ∗ and f = f∗. Note
that f∗ may lie outside the range (0, 1), in which case no feasible interior policy
exists.

3.3 Policy is at a boundary

There are two feasible boundary policies that can be optimal in steady state:
f = 0 or f = 1. Consider the case where γ > − c

α . Under this policy it must be
that f = f∗∗ = 0. Solving İ(t) = 0 yields

I∗∗ = 1− τ

β
. (10)

The disease is endemic as long as τ < β. It is eradicated if τ > β. Setting
γ̇(t) = 0 yields

γ∗∗ =
p

τ − β − δ . (11)
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Another possibility is that γ > − c
α . In this case, f = f∗∗∗ = 1. Solving

İ(t) = 0 and γ̇(t) = 0 yields

I∗∗∗ = 1− α+ τ

β
,

γ∗∗∗ =
p+ c

α+ τ − β − δ .

The disease is endemic as long as α+ τ < β. It is eradicated if α+ τ > β.

3.4 Optimal policy

Policy can be either at one of the boundaries or at an interior level, depending
on the value of the shadow price. Rowthorn (2004) and Goldman and Lightwood
(2002) show that optimal policy will take on one of the two boundary values.
It is never optimal to treat partially. This is because the shadow price is a
single-valued function of the state variable, so optimal policy can have at most
one switch point. The interior steady state can only be reached by a path that
zig-zags back on itself. In contrast, each of the boundary steady states can
be reached by a path with at most one switch point, with the precise path
depending on the initial infection level. Which policy of the two boundaries is
optimal will depend on the value of parameters.

4 The SIS model with two strains of infection

4.1 Set-up

In the previous section, the transmission rate β was uniform and there was one
policy instrument. Suppose there are two variants of infection, one more in-
fectious than the other. The more infectious variant H has transmission rate
βH while the less infectious variant L is characterised by transmission rate βL.
The policymaker has two policy instruments at her disposal (fH and fL), each
targeting one of the infection strands. There is an implicit assumption that
the policymaker can distinguish the two strains and therefore target therapy
perfectly. Individuals at the outset can catch either infection strand, and when
infected they transmit the strand that they themselves are infected with. The
two strands are mutually exclusive, in the sense that individuals cannot become
infected with both at the same time. Similar to the previous section, there is a
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possibility of exogenous recovery. If individuals recover, they are again suscep-
tible to either infection strand. The proportion of the total population infected
with H is IH . The proportion infected with L is IL. The total population is
normalised to size 1. The policymaker maximises the social welfare function

V (I0H , I
0
L) =

∫ ∞
0

e−δt(p(1−IH(t)−IL(t))−c(fH(t)IH(t)+fL(t)IL(t)))dt (12)

subject to the equations of motion for the two infection types:

İH = βHIH(t)(1− IH(t)− IL(t))− τIH(t)− αfH(t)IH(t), (13)

İL = βLIL(t)(1− IH(t)− IL(t))− τIL(t)− αfL(t)IL(t). (14)

All parameters are strictly positive. Further,

fH , fL ∈ [0, 1]

IH(0) = I0H > 0 given

IL(0) = I0L > 0 given

I0H + I0L < 1

In addition,

βH > βL > τ + α (15)

The above inequalities ensure that neither variant of the disease can be
eliminated even asymptotically by treating all infected people. Thus, at any
fixed point IH , IL > 0. They also ensure that IH(t) + IL(t) < 1 for all t.

The current value Hamiltonian is

H = p(1− IH − IL)− c(fHIH + fLIL)

+λH(βHIH(1− IH − IL)− τIH − fHαIH)

+λL(βLIL(1− IH − IL)− τIL − fLαIL) (16)

The first order-conditions yield the following solution:
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f∗H

 = 0
∈ (0, 1)

= 1

 if λ∗H

>=
<

− c

α
, (17)

f∗L

 = 0
∈ (0, 1)

= 1

 if λ∗L

>=
<

− c

α
. (18)

The equations of motion for the two costate variables are

λ̇H = δλH −
∂H

∂IH
= p+ cfH − λH (−δ + βH(1− IH − IL)− τ − αfH)

+(λHβHIH + λLβLIL), (19)

λ̇L = δλL −
∂H

∂IL
= p+ cfL − λL (−δ + βL(1− IH − IL)− τ − αfL)

+(λHβHIH + λLβLIL). (20)

4.2 Fixed points

4.2.1 The set of feasible fixed points

Definition 1 A fixed point is a solution (f∗H , f
∗
L, I
∗
H , I

∗
L, λ

∗
H , λ

∗
L) satisfying equa-

tions (13), (14), (17), (18), (19) and (20) as well as İH = İL = λ̇H = λ̇L =
ḟH = ḟL = 0.

There are nine potential fixed points, listed below. The notation Aab denotes
the fixed point with policy f∗H = a, f∗L = b for a, b = 0 or 1. The notation a, b = 2
denotes an interior policy.
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A00 : fH = 0, fL = 0

A01 : fH = 0, fL = 1

A02 : fH = 0, fL ∈ (0, 1)

A10 : fH = 1, fL = 0

A11 : fH = 1, fL = 1

A12 : fH = 1, fL ∈ (0, 1)

A20 : fH ∈ (0, 1), fL = 0

A21 : fH ∈ (0, 1), fL = 1

A22 : fH ∈ (0, 1), fL ∈ (0, 1)

Definition 2 An asymptotic fixed point (AFP) is a solution (f∗H , f
∗
L, I
∗
H , I

∗
L, λ

∗
H , λ

∗
L)

where at least one component in each of the pairs (IH , IL), (λH , λL) comes ar-
bitrarily close to its solution but only converges to it in the limit. At least one
equality in each of the following pairs does not hold: {İH = 0, İL = 0}, {λ̇H =
0, λ̇L = 0}. The condition ḟH = ḟL = 0 holds.

There are two potential types of AFPs, each encompassing several potentially
optimal policies.

A13 : IH → 0, IL = I∗L, f
∗
H = 1, fL = f∗L ∈ [0, 1]

A31 : IH = I∗H , IL → 0, fH = f∗H ∈ [0, 1], f∗L = 1

Lemma 3 All fixed points are of type A10, A12, or A20.

Proof. Consider A22. Suppose fH ∈ (0, 1) and fL ∈ (0, 1) during a finite
interval of time. Then λH = λL = − c

α and thus λ̇H = λ̇L = 0 within this
interval. Subtracting (20) from (19) yields:

(c/α)(βH − βL)(1− IL − IH) = 0

This is not possible since the left hand side is strictly positive. This demon-
strates that A22 does not satisfy the Hamiltonian conditions and is not feasible.
Thus, the Hamiltonian conditions imply that at least one of the control variables
at a steady state is on the boundary.
Since IH , IL > 0 due to our parameter assumptions, we can rewrite the

equations of motion as follows:
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İH
IH

= βH(1− IH − IL)− τ − fHα (21)

İL
IL

= βL(1− IH − IL)− τ − fLα (22)

At a fixed point the right hand sides of the above equations must be zero.
This implies that

fH =
βH(1− IH − IL)− τ

α
, (23)

fL =
βL(1− IH − IL)− τ

α
. (24)

Subtracting (24) from (23) yields

fH − fL =
(βH − βL)(1− IH − IL)

α
> 0. (25)

This is not satisfied by fixed points A00, A01, A11, A02 and A21. This reduces
the set of feasible fixed points to F = {A10, A12, A20}.

4.2.2 Analysis of fixed points A10 and A12

Fixed points A10 and A12 are the case when f∗H = 1 and f∗L = 1 in the former
while f∗L ∈ (0, 1) in the latter. Setting İH = 0, İL = 0 and f∗H = 1, we obtain
that the fixed points A10 and A12 are characterised by the following treatment
levels:

f∗H = 1 (26)

f∗L = 1− (βH − βL)

βH

τ + α

α
, (27)

the latter only being feasible if 1 ≥ (βH−βL)
βH

τ+α
α . Except in the special case

of strict equality, 1 > (βH−βL)
βH

τ+α
α and the fixed point is of the form A12. The

fixed point A10 is a boundary fixed point and will be addressed in Section 4.2.5.
At fixed point A12, we can characterise the total level of infection:

I∗H + I∗L = 1− τ + α

βH
. (28)
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Further, the equation of motion for λH is given by

λ̇H = 0 (29)

= p+ cf∗H + δλ∗H − λ∗H

(
İH
I∗H

)
+ (λ∗HβHI

∗
H + λ∗LβLI

∗
L)

= p+ cf∗H + δλ∗H + (λ∗HβHI
∗
H + λ∗LβLI

∗
L).

where the second equality follows from the fact that İH = 0 at a steady
state. Similarly,

λ̇L = 0 (30)

= p+ cf∗L + δλ∗L − λ∗L

(
İL
I∗L

)
+ (λ∗HβHI

∗
H + λ∗LβLI

∗
L)

= p+ cf∗L + δλ∗L + (λ∗HβHI
∗
H + λ∗LβLI

∗
L).

By subtraction,
c(f∗H − f∗L) + δ(λ∗H − λ∗L) = 0.

Since f∗L is interior, it must be that λ
∗
L = − c

α . Thus,

λ∗H = − c
α

[
1 +

(βH − βL)

βH

τ + α

δ

]
.

Since βH−βL > 0, it follows that λ∗H < − c
α , as required by the Hamiltonian

conditions. Thus, there is a line of fixed points in (IH , IL) space of type A12
that satisfies the Hamiltonian conditions with the following properties:

I∗H + I∗L = 1− τ + α

βH

λ∗H = − c
α

[
1 +

(βH − βL)

βH

τ + α

δ

]
< − c

α

λ∗L = − c
α

f∗H = 1

f∗L = 1− (βH − βL)

βH

τ + α

α
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4.2.3 Analysis of fixed point A20

Fixed point A20 is the case when f∗H ∈ (0, 1) and f∗L = 0. At fixed point A20,
setting f∗L = 0, İH = 0 and İL = 0 yields the following treatment levels:

f∗∗H =
βH − βL
βL

τ

α
(31)

f∗∗L = 0

the latter only being feasible if 1 ≥ (βH−βL)
βL

τ
α . Except in the special case of

strict equality, 1 > (βH−βL)
βL

τ
α . Note that in the case of strict equality, this fixed

point becomes A10.
Rearranging İH = 0 and İL = 0 gives us the total level of infection,

I∗∗H + I∗∗L = 1− τ

βL
. (32)

The equations of motion for the costate variables are,

λ̇H = 0

= p+ cf∗∗H + δλ∗∗H − λ∗∗H

(
İH
I∗∗H

)
+ (λ∗∗H βHI

∗∗
H + λ∗∗L βLI

∗∗
L )

= p+ cf∗∗H + δλ∗∗H + (λ∗∗H βHI
∗∗
H + λ∗∗L βLI

∗∗
L ),

λ̇L = 0

= p+ cf∗∗L + δλ∗∗L − λ∗∗L

(
İL
I∗∗L

)
+ (λ∗∗H βHI

∗∗
H + λ∗∗L βLI

∗∗
L )

= p+ cf∗∗L + δλ∗∗L + (λ∗∗H βHI
∗∗
H + λ∗∗L βLI

∗∗
L ).

Employing the same method as in the previous section, we subtract to yield

c(f∗∗H − f∗∗L ) + δ(λ∗∗H − λ∗∗L ) = 0.
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Since f∗∗H is interior it must be that λ∗∗H = −c/α. Thus,

λ∗∗L = − c
α

[
1− (βH − βL)

βL

τ

δ

]
. (33)

Since βH −βL > 0 it follows that λ∗L > − c
α always holds, as required by the

Hamiltonian conditions. Thus, there is a line of fixed points of type A20 that
satisfy the Hamiltonian conditions with the following properties:

I∗∗H + I∗∗L = 1− τ

βL

λ∗∗H = − c
α

f∗∗H =
(βH − βL)

βL

τ

α

λ∗∗L = − c
α

[
1− (βH − βL)

βL

τ

δ

]
f∗∗L = 0

Let us label fixed points A12 and A20 as Interior Fixed Points (IFPs) for
ease of exposition, as they are fixed points that induce one policy instrument to
be at an interior level.

4.2.4 Analysis of asymptotic fixed points

For the analysis of asymptotic fixed points we need to define the concept of a
Most Rapid Approach Path (MRAP).

Definition 4 An MRAP is a path with a policy that ensures convergence to the
fixed point in less time than any other policy.

First, consider A13. IH tends asymptotically towards zero and IL converges
to some equilibrium level:

A13 : IH −→ 0, IL = I∗L

For IH to asymptotically tend to zero, we require İH
IH

< 0 at all points in

time, for which the MRAP is f∗H = 1. Combining these features gives İH
IH

=
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βH(1− IH − I∗L)−α− τ ≈ βH(1− I∗L)−α− τ , for IH suffi ciently close to zero.
This needs to be negative, so the condition required for this to be a feasible
AFP is

1− α+ τ

βH
< I∗L. (34)

Similarly, IL converges to I∗L, which requires
İL
IL

= 0. Using this we can solve
for I∗L:

I∗L = 1− τ + αf∗L
βL

. (35)

Thus, (34) simplifies to

τ + αf∗L
βL

<
α+ τ

βH
. (36)

Any f∗L chosen to satisfy this will cause IH to converge asymptotically to
zero and IL to I∗L as defined above. Thus there exists a fixed point of type A13,
which involves asymptotic convergence of IH to zero:

IH −→ 0

I∗L = 1− τ + αf∗L
βL

f∗H = 1

Similarly, consider fixed point A31, where IL tends towards zero asymptoti-
cally and IH converges to I∗H :

A31 : IH = I∗H , IL −→ 0

For IL to tend asymptotically to zero, we require İL
IL

< 0 at all points in

time, for which the MRAP is f∗L = 1. Combining these features gives İL
IL

=
βL(1− I∗H − IL)− α− τ ≈ βL(1− I∗H)− α− τ , for IL suffi ciently close to zero.
This needs to be negative, which requires
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1− α+ τ

βL
< I∗H . (37)

Similarly, IH converges to I∗H , which requires
İH
IH

= 0. Using this we can
solve for I∗H :

I∗H = 1− τ + αf∗H
βH

. (38)

Thus, (37) simplifies to

τ + αf∗H
βH

<
α+ τ

βL
. (39)

Any f∗H chosen to satisfy this will cause IL to converge asymptotically to
zero and IH to I∗H as defined above. Thus, there exists a fixed point of type
A31, which involves asymptotic convergence of IL to zero:

IL −→ 0

I∗H = 1− τ + αf∗H
βH

f∗L = 1

Note that both asymptotic fixed points can be feasible at the same time.
Rearranging (36) and (39) gives:

τ(
1

βL
− 1

βH
) <

α

βH
− αf∗L

βL
,

τ(
1

βL
− 1

βH
) >

αf∗H
βH
− α

βL
.

Both conditions can be satisfied as long as f∗H , f
∗
L < 1. The case of fH =

fL = 1 deserves further attention and is examined more fully in Section 4.2.6.
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4.2.5 Further analysis of feasibility: fixed points

Define the constant K as

K =
βH − βL
βL

τ

α

The parameter space can now be divided into three regimes in terms of
feasibility of the various fixed points.

Proposition 5 If K < 1, there exist a line of fixed points of type A12 and A20.
If K = 1, there exists a fixed point of type A10. If K > 1, there are no fixed
points.

Proof. The conditions for the two kinds of interior fixed points to exist are as
follows:

A12 : fH = 1, fL ∈ (0, 1) needs 1 >
(βH − βL)

βH

τ + α

α

A20 : fH ∈ (0, 1), fL = 0 needs 1 >
(βH − βL)

βL

τ

α

These two conditions are, in fact, identical. To see this, consider the following
rearrangement of the condition for A12:

1 >
(βH − βL)

βH

τ + α

α

⇔ βHα > (βH − βL)(τ + α)

⇔ βL(τ + α) > βHτ

⇔ βLα > (βH − βL)τ

⇔ 1 >
(βH − βL)

βL

τ

α

This demonstrates that both conditions are equivalent to βL(τ +α) > βHτ .
The condition 1 > (βH−βL)

βL

τ
α is identical to K < 1.

If K = 1, this implies that (βH−βL)βL

τ
α = (βH−βL)

βH

τ+α
α = 1, and both A12 and

A20 become the fixed point of type A10. Total infection is characterised by the
equation:

IH + IL = 1− τ + α

βH
= 1− τ

βL
.
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If K > 1, none of the conditions for A12, A20 nor A10 are satisfied. Therefore
there are no fixed points.

The proof of this Proposition shows that if K < 1, there are two lines of
fixed points with total infection levels:

I∗H + I∗L = 1− τ + α

βH
,

I∗∗H + I∗∗L = 1− τ

βL
.

Subtracting,

(I∗∗H + I∗∗L )− (I∗H + I∗L) =
α

βH

(
1− (βH − βL)

βL

τ

α

)
> 0

This shows that A20 always has higher total infection than A12. This is
obvious as in the latter, both treatment levels are higher.

4.2.6 Further analysis of feasibility: AFPs

We examine further the role of K in the feasibility of the AFPs. Let us denote
A013 as the AFP A13 when f∗H = 1 and f∗L = 0. Further denote the AFP A13
when f∗H = 1 and f∗L = 1 as A113. Last, A

i
13 is the AFP A13 when f∗H = 1 and

f∗L ∈ (0, 1). Symmetrically, we can define A031, A
i
31 and A

1
31 as the AFP A31

when f∗H = 0, f∗H ∈ (0, 1) and f∗H = 1 respectively and f∗L = 1 in all cases.

Proposition 6 If K < 1, there exist AFPs of type A031, A
i
31, A

1
31, A

0
13 and

Ai13. If K ≥ 1, there exist AFPs of type A031, A
i
31, and A

1
31.

Proof. First, note that the necessary condition for the feasibility of A31
( τ+αf

∗
H

βH
< α+τ

βL
) is satisfied independently of the value of K.

Next, consider K < 1 and A13. The necessary condition for this AFP to be
feasible is τ+αf

∗
L

βL
< α+τ

βH
. This is never satisfied for f∗L = 1. However, it may be

satisfied for small enough f∗L. In particular, when K < 1, it is satisfied when
f∗L = 0. Thus, the AFPs that are feasible whenK < 1 are A031, A

i
31, A

1
31, A

0
13 and

Ai13. Here, A
i
13 is defined such that f

∗
L is small enough to satisfy the feasibility

condition for this AFP.
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Figure 1: The set of feasible fixed points and AFPs when K > 1.

Next, consider K ≥ 1. For A13 to be a feasible equilibrium, we require
τ+α
βH

>
τ+αf∗L
βL

, which is violated for all values of f∗L when K ≥ 1. Thus, the set

of AFPs that are feasible when K ≥ 1 is A031, A
i
31 and A

1
31.

The set of feasible fixed points and AFPs when K > 1 is depicted in Figure
1. The feasible set when K = 1 is shown in Figure 2. Figure 3. shows the
set of feasible fixed points and AFPs when K < 1. The AFPs with interior
policies are not depicted in these graphs as they are only pinned down once the
treatment levels are known.
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Figure 2: The set of feasible fixed points and AFPs when K = 1.

Figure 3: The set of feasible fixed points and AFPs when K < 1.
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4.2.7 Feasible policy along the path

It is necessary to consider the path towards each of the steady states, and in
particular which policies are feasible under which conditions. Policies along the
path will always be boundary policies, as these are Most Rapid Approach Paths
(MRAPs). We take each of the boundary policies in turn and examine the
feasibility conditions required for IH and IL to converge to their steady state
values. Let Pab denote the policy fH = a, fL = b.
First, consider P00. This implies

İH
IH

= βH(1− IH − IL)− τ , (40)

İL
IL

= βL(1− IH − IL)− τ .

There are two ways of approaching a fixed point with this policy. First, we
can have İH , İL > 0 (i.e. IH and IL are increasing towards I∗H and I∗L). The
required conditions for this are

1− τ

βL
> IH + IL

1− τ

βH
> IH + IL

which collapse to

1− τ

βL
> IH + IL. (41)

Similarly, we can have İH , İL < 0 (i.e. IH and IL are decreasing towards I∗H
and I∗L). The required conditions for this are

1− τ

βL
< IH + IL

1− τ

βH
< IH + IL

which collapse to
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1− τ

βH
< IH + IL. (42)

Next, consider P10. For İH , İL > 0, the required conditions are

1− τ

βL
> IH + IL

1− τ + α

βH
> IH + IL

where the overriding condition is

1− τ

βL
> IH + IL. (43)

For İH , İL < 0, we require

1− τ

βL
< IH + IL

1− τ + α

βH
< IH + IL

both of which are satisfied when

1− τ + α

βH
< IH + IL. (44)

Third, take P11. For İH , İL > 0, we need to satisfy

1− τ + α

βH
> IH + IL

1− τ + α

βL
> IH + IL

where the overriding condition is
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1− τ + α

βL
> IH + IL. (45)

For İH , İL < 0, we require

1− τ + α

βH
< IH + IL

1− τ + α

βL
< IH + IL

both of which are satisfied when

1− τ + α

βH
< IH + IL. (46)

Last, consider P01. For İH , İL > 0, we need to satisfy

1− τ

βH
> IH + IL

1− τ + α

βL
> IH + IL

where the overriding condition is

1− τ + α

βL
> IH + IL. (47)

For İH , İL < 0, we require

1− τ

βH
< IH + IL

1− τ + α

βL
< IH + IL

both of which are satisfied when
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Figure 4: Feasible policies depicted for the case where K < 1.

1− τ

βH
< IH + IL.

These facts are summarised in the table below:

Table 1 (Feasible policies along the path)
İH , İL > 0 İH , İL < 0

P00 1− τ
βL

> IH + IL 1− τ
βH

< IH + IL
P10 1− τ

βL
> IH + IL 1− τ+α

βH
< IH + IL

P11 1− τ+α
βL

> IH + IL 1− τ+α
βH

< IH + IL
P01 1− τ+α

βL
> IH + IL 1− τ

βH
< IH + IL

Figure 4 shows which policies are feasible in different regions of initial infec-
tion levels.
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4.3 Optimal policy

4.3.1 Optimal policy in the neighbourhood of the IFPs

Having derived feasibility conditions for the various policies, the obvious ques-
tion is which policies are optimal. We explore the behaviour of the path in
approaching each of the interior fixed points. Specifically, what is the policy
along the path near to the fixed point? We know that policies along the path
will be at a boundary, as these are MRAPs. Therefore, we examine those poli-
cies that are at an interior level at the steady state, as they are likely to have a
switch point along the path. The approach is to perturb the fixed point slightly
and derive the policy in the neighbourhood of the fixed point.
First, take A12. Let us perturb the solution by changing fL from f∗L to

f∗L + ∆fL whilst leaving fH unchanged at its steady state value. Immediately
following this change, İH = 0, İL = −αI∗L∆fL 6= 0, λ̇H = 0 and λ̇L = 0.
Differentiating (20) yields

λ̈L = (c+ αλ∗L)ḟL − λ̇L (−δ + βL(1− I∗L − I∗H)− τ − αf∗L) + λ∗LβL(İH + İL)

+(λ̇HβHI
∗
H + λ̇LβLI

∗
L) + (λ∗HβH İH + λ∗LβLİL)

= 2λ∗LβLİL

= −2
c

α
βL(−αI∗L)∆fL

= 2cβLI
∗
L∆fL 6= 0

Thus, there is a policy switch. To see this, consider the following. If ∆fL > 0
then λ̈L > 0 and İL < 0. Since we require λL = − c

α at the fixed point, this
implies that λL < − c

α when approaching the fixed point from above. The
Hamiltonian conditions imply that fL = 1 along this segment of the path.
Likewise, if ∆fL < 0 then λ̈L < 0 and İL > 0. This implies that λL > − c

α
when approaching the fixed point from below, and hence from the Hamiltonian
conditions it must be that fL = 0. Since λ̇H = 0 and λH < − c

α at the fixed
point, it must be that λH < − c

α holds on either side of the fixed point, by
continuity. This demonstrates that there is a Hamiltonian path to A12 which
involves boundary values of fH and fL until it reaches the fixed point, when it
switches to an interior value of fL. There is no change in fH .

Next, take A20. Perturb the solution by altering fH from f∗∗H to f∗∗H + ∆fH ,
leaving f∗L = 0. Immediately following this change, İH = −αI∗∗H ∆fH 6= 0,
İL = 0, λ̇H = 0 and λ̇L = 0. Differentiating λ̇H we see that in the proximity to
this fixed point,
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λ̈H = (c+ αλ∗∗H )ḟH − λ̇H (−δ + βH(1− I∗∗H − I∗∗L )− τ − αf∗∗H ) + λ∗∗H βH(İH + İL)

+(λ̇HβHI
∗∗
H + λ̇LβLI

∗∗
L ) + (λ∗∗H βH İH + λ∗∗L βLİL)

= 2λ∗∗H βH İH

= −2
c

α
βH(−αI∗∗H )∆fH

= 2cβHI
∗∗
H ∆fH 6= 0

Again, there will be a policy switch. If ∆fH > 0 then λ̈H > 0 and İH < 0.
This implies that λH < − c

α when approaching the fixed point from above, and
hence from the Hamiltonian conditions it must be that fH = 1. Likewise, if
∆fH < 0 then λ̈H < 0 and İH > 0. This implies that λH > − c

α when
approaching the fixed point from below, and hence it must be the case that
fH = 0. By continuity, λL > − c

α and fL = 0 on both sides of the fixed point.
Thus, there is a Hamiltonian path to this fixed point which involves boundary
values of fH and fL and a switch to an interior value of fH on reaching the
fixed point, while retaining the boundary value for fL.
Comparing these optimal policies to the feasibility conditions of the previous

section, we find that all of the optimal policies are feasible [is this trivial?]. From
the conditions derived for policy along the path, it is clear that, for example,
the upper line I∗∗H + I∗∗L = 1− τ

βL
is attainable from the top using both P11 and

P10. It is also clear that P11 is the MRAP. However, we find that P10 is the
optimal policy. The intuition for this is as follows. This is because if f∗L = 0 at
the fixed point, then λ∗L > − c

α . Since λL is continuous it must be that λ
∗
L > − c

α
in the vicinity of the fixed point. Hence f∗L = 0 in the vicinity of the fixed point
and it cannot be optimal to reach this fixed point with P11. Similar intuition
applies for the optimal policy for A12.

4.3.2 Skiba Hypothesis

A "Skiba curve" is a curve of indifference along which policy is indifferent be-
tween the available options. In our case, it is a curve along which conditions
prescribe indifference between selecting the path towards A20 versus A12. Note
that these paths are the optimal paths derived in the previous section. Following
on from these results, we hypothesise that there is a Skiba curve lying between
the two lines of fixed points. If the initial point

(
I0H , I

0
L

)
lies between the origin

and the Skiba curve, then optimal policy is
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fH = 1, fL = 0 for I0H + I0L < 1− τ + α

βH

fH = 1, fL = 1 for I0H + I0L > 1− τ + α

βH

fH = 1, fL = 1− (βH − βL)

βH

τ + α

α
for I0H + I0L = 1− τ + α

βH

If the initial point
(
I0H , I

0
L

)
lies on the opposite side of the Skiba curve from

the origin, then optimal policy is

fH = 0, fL = 0 for I0H + I0L < 1− τ

βL

fH = 1, fL = 0 for I0H + I0L > 1− τ

βL

fH =
(βH − βL)

βL

τ

α
, fL = 0 for I0H + I0L = 1− τ

βL

These sets of optimal policies are depicted in Figure 5. Skiba curves can-
not be derived analytically. Their presence can only be detected by means of
simulations.

4.3.3 Optimal policy in the neighbourhood of the AFPs

We have already shown that optimal policy for A31 will involve f∗L = 1, as this is
the MRAP. Similarly, optimal policy for A13 will involve f∗H = 1. The question
is which policy is optimal of the range available to fH in A31 and fL in A13. In
order to draw conclusions on this we observe that the asymptotic fixed points
always involve one strand of the infection that is asymptotically eradicated. As
a result, the behaviour of the system in the neighbourhood of the fixed point can
be approximated by the behaviour of a one-infection system. This is because
the behaviour of the system for small IL is very similar to the behaviour when
IL = 0. Naturally this holds for IH close to zero as well.
The behaviour of a one-infection system has been analysed in Section 3. As

was discussed, Rowthorn (2004) shows that only extreme values for policy are
optimal. This is because a one-infection system has a costate variable that is
single-valued in the infection level along the optimal path, which implies that
the optimum path cannot be a spiral. In our case the costate variable λH is
defined as
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Figure 5: Optimal policies and Skiba curve.
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λH =
∂V (IH , IL)

∂IH
,

which for small IL is single-valued along the optimal path. Similarly,

λL =
∂V (IH , IL)

∂IL
,

which for small IH is single-valued along the optimal path. Interior policies
involve spirals. This implies that optimal policy for the AFPs will only ever
involve boundary values, which allows us to eliminate Ai31 and A

i
13 as steady

states that are never optimal. Therefore, when K > 1, the set of feasible fixed
points and AFPs is F = {A031, A131}, one of which will be optimal. When K < 1,
the set of feasible fixed points and AFPs is F = {A12, A20, A031, A131, A013}, one
of which will be optimal. Similarly, when K = 1, the feasible set is F =
{A10, A031, A131}. We cannot make any further conclusions on the optimality
of these remaining feasible fixed points. Optimality will depend on parameter
values. This will be explored by way of simulations in Section 5.

4.4 Extensions

4.4.1 Asymptotic eradication

Proposition 7 Both variants of the disease cannot be simultaneously eradi-
cated even asymptotically in equilibrium, i.e. we cannot have both I∗H → 0 and
I∗L → 0, if we assume that

τ + α

βH
< 1,

τ

βL
< 1,

τ + α

βL
< 1.

Proof. To see this, first consider the case of the interior fixed points. Here, it
is trivial. In the case of A12, I∗H + I∗L = 1− α+τ

βH
. We cannot have I∗H + I∗L = 0.

Similarly for A20 where I∗H +I∗L = 1− τ
βL
, it is not possible to have I∗H +I∗L = 0.

Next, consider the asymptotic fixed points. In the case of A31, we know that
I∗L → 0 so the question is what happens to I∗H . For IL to tend towards zero
asymptotically, the necessary condition is IH > 1 − α+τ

βL
. Clearly IH 6= 0 is
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necessary for this to be satisfied. Similarly, fixed point A13 implies that I∗H → 0.
The necessary condition for this is IL > 1− α+τ

βH
, which can only be satisfied if

IL 6= 0. Thus, both variants of the disease cannot be eradicated in equilibrium,
even asymptotically.

5 Simulations

The purpose of simuations is to enable the identification of optimal policy under
different parameters. We provide examples of optimal policy in the case of
various parameter assumptions. Simulations are carried out using the fourth-
order Runge-Kutta method. Recalling that we defined K = βH−βL

βL

τ
α , there

are three cases that can be evaluated: K < 1, K = 1 and K > 1. We focus
on the case when K > 1 and there are only two feasible fixed points: A031 and
A131. This case is interesting because it suggests that with an appropriate set
of parameters, it may be optimal to only eradicate the low infectivity strain,
while allowing the high infectivity strain to be endemic, with full or maybe even
no treatment. Further, this case will allow the clearest policy recommendations
as the number of possible optimal policies is small. The following parameter
assumptions ensure that K > 1:

Table 2 (Parameter values)
Parameter Value

βH 0.95
βL 0.4
τ 0.15
α 0.2

In addition, we assume that p = 1 and δ = 0.111.

5.1 Paths with fixed policy

The goal is to evaluate whether, under different scenarios, it is better to move
towards A031 or A

1
31. In Section 4.2.4 it was shown that in the neighbourhood of

A031, optimal policy is (f∗H , f
∗
L) = (0, 1). In the neighbourhood of A131, optimal

policy is (f∗H , f
∗
L) = (1, 1). These policies may not be optimal along the en-

tire path towards these fixed points. However, we begin with a simple thought
experiment where we assume that the policymaker can only choose one policy
and cannot change it. This may happen in reality, for example, if the policy-
maker commits to a certain treatment level and purchases the requisite amount
of material. Organising additional treatment may take time. Further, there
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may be political factors as agencies responsible for treatment may not be able
to secure additional funds from governements in the short run. We carry out
simulations where we assume that this is the case. In the next section, we allow
for flexibility of treatment across time.
Optimal policy is evaluated based on the value of the integral, V , under

each policy. We fix policy at the beginning and allow the system to converge to
steady state. In order to analyse policy under various scenarios, we focus on the
cost paremeter c, which we vary. We find that there are three regions of values
for c, each of which involve a different optimal policy. These are shown in the
table below:

Table 3 (Regions of optimal policy as c varies)
Region c f∗H f∗L
I c < 0.2875 1 1
II 0.2875 ≤ c ≤ 0.3006 0 or 1, depending on I0H 1
III c > 0.3006 0 1

Let us look at examples from each region and compare the value of V when
starting at different initial points I0H and setting fH = 0 or fH = 1. Note
that when we are at A131, I

∗
H = 1 − τ+α

βH
= 0.6316. When we are at A031,

I∗H = 1 − τ
βH

= 0.8421. We take five initial infection levels for the H type,

distributed evenly across the interval I0H ∈ [0.6316, 0.8421]. The initial value for
the L infection is constant across all simulations and is set at a value close to
zero: I0L = 0.1.
First, consider Region I. Let c = 0.1. The table below gives the prevalence

of each infection type when steady state is reached, and the value of the integral
of moving to that steady state. The policy with the higher value of V - the
optimal policy - is emphasised in bold.

Table 4 ( c = 0.1)
fH = 1 (path towards A131) fH = 0 (path towards A031)

I0H I∗L I∗H V I∗L I∗H V
0.6667 0.0000110 0.6316 2.6126 0.00000027 0.8421 1.5425
0.7018 0.0000109 0.6316 2.5632 0.00000026 0.8421 1.4968
0.7369 0.0000108 0.6316 2.5161 0.00000026 0.8421 1.4531
0.7719 0.0000107 0.6316 2.4711 0.00000026 0.8421 1.4114
0.8070 0.0000106 0.6316 2.4278 0.00000026 0.8421 1.3714

In this scenario, policy is independent of the initial value. It is always optimal
to set f∗H = 1 and treat everyone. As costs rise, we enter Region II. As an
example of policy evaluation for costs in this region, we set c = 0.295. The table
below shows details of the value of the integral and the infection levels for this
parameter combination:
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Table 5 ( c = 0.295)
fH = 1 (path towards A131) fH = 0 (path towards A031)

I0H I∗L I∗H V I∗L I∗H V
0.6667 0.0000110 0.6316 1.4806 0.00000027 0.8421 1.4636
0.7018 0.0000109 0.6316 1.4223 0.00000026 0.8421 1.4184
0.7369 0.0000108 0.6316 1.3668 0.00000026 0.8421 1.3753
0.7719 0.0000107 0.6316 1.3138 0.00000026 0.8421 1.3342
0.8070 0.0000106 0.6316 1.2628 0.00000026 0.8421 1.2947

From the simulations it is clear that for I0H ≤ 0.7018, the policy f∗H = 1
is optimal. For I0H ≥ 0.7369, the policy f∗H = 0 is optimal. However, we
can be more specific than this. In the region I0H ∈ (0.7018, 0.7369), there is
a point of indifference where the initial value is such that policy is indifferent
between setting f∗H = 0 and f∗H = 1. Simulations show that this value is Ĩ0H =
0.7125, where V = 1.4051 for both policies. Optimal policy when c = 0.295 is
summarised in the table below:

Table 6 (Optimal policy when c = 0.295)
I0H f∗H f∗L

I0H < 0.7125 1 1
I0H = 0.7125 0 or 1 1
I0H > 0.7125 0 1

The remaining region to be considered is Region III, where c > 0.3006 and
optimal policy is f∗H = 0. Let us take c = 0.5 as an example. The table below
details the values of the relevant variables from the simulations:

Table 7 ( c = 0.5)
fH = 1 (path towards A131) fH = 0 (path towards A031)

I0H I∗L I∗H V I∗L I∗H V
0.6667 0.0000110 0.6316 0.2900 0.00000027 0.8421 1.3806
0.7018 0.0000109 0.6316 0.2228 0.00000026 0.8421 1.3361
0.7369 0.0000108 0.6316 0.1585 0.00000026 0.8421 1.2936
0.7719 0.0000107 0.6316 0.0971 0.00000026 0.8421 1.2530
0.8070 0.0000106 0.6316 0.0381 0.00000026 0.8421 1.2140

When c = 0.5, the optimal policy is f∗H = 0. This is the optimal policy
for any c in Region III. Note that all of the above simulations show the same
qualitative results for smaller values of I0L, namely I

0
L = 0.01, I0L = 0.001 and

I0L = 0.0001.
These simulations show a fairly intuitive result, namely that as costs rise,

optimal policy is more likely to be treating no one infected with the H strand.
They also demonstrate an interesting finding, whereby there is a small range of
costs for which optimal policy is dependent on initial prevalence of infection.
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5.2 Hamiltonian paths with variable policy

In this section we allow policy to vary. We also look at strictly Hamiltonian
paths i.e. those that satisfy the Hamiltonian conditions for optimality. In order
to check that paths are Hamiltonian paths, costate variables are required. We
examine each initial point studied above and solve for values of the costate
variables at these points using the facts that

λH =
∂V (IH , IL)

∂IH
,

λL =
∂V (IH , IL)

∂IL
.

These partial derivatives can be approximated by perturbing the infection
levels slightly. Thus, for initial infection levels I0H and I0L,

λ0H ≈ V (I0H + ∆, I0L)− V (I0H , I
0
L)

∆
, (48)

λ0L ≈ V (I0H , I
0
L + ∆)− V (I0H , I

0
L)

∆
, (49)

for small ∆. In these simulations we set ∆ = 0.001. Table 8 depicts the
Hamiltonian conditions required for our two potential policies to be optimal:

Table 8 (Hamiltonian optimality conditions)
Policy Condition

f∗H = 1, f∗L = 1 λ∗H < − c
α , λ

∗
L < − c

α
f∗H = 0, f∗L = 1 λ∗H > − c

α , λ
∗
L < − c

α

In order to test whether our paths are Hamiltonian paths, for each initial
infection level we find the initial costate variables, λ0H and λ0L, using (48) and
(49). We then test whether either of the two candidate policies satisfies the
Hamiltonian conditions. If one does, we simulate the path from this initial
point, using values for our costate variables to test for optimal policy at each
time increment. This allows policy to vary optimally. We then plot graphs of
the evolution of the policy variables over time along with the state variables
IH and IL. This will allow us to see whether there are any switch points (i.e.
changes) in policy, and at what levels of IH and IL they occur.

Let us begin with the lowest costs, c = 0.1. Solving for the costate variables
and checking the Hamiltonian conditions shows that there is a Hamiltonian
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Figure 6: Evolution of system towards fixed point. I0H = 0.6667, c = 0.1.
Legend: Green=f∗H , Red=f

∗
L, Black=IH , Blue=IL

path from each initial point, with optimal policy (1, 1) along the entire path.
There are no switch points. One example of such a path is depicted in Figure
6. This path is simple. The control variables do not change over time and the
system gradually moves towards the fixed point, with IH dipping slightly before
converging to the steady state level. Fixing policy is optimal. This is in line
with our findings from the previous section, where moving to A131 was optimal
when c = 0.1.
Further simulations are carried out on paths when c = 0.295. Each of our

five initial points has a Hamiltonian path. The path with initial value closest
to the fixed point has no switch points, while the remaining four paths have
one switch point. Simulations show that all paths converge to fixed point A131,
somewhat unexpectedly as, for some, initial optimal policy is (0, 1). These
details are shown in Table 9. It is interesting to compare this to the results
of the previous section. For the initial point I0H = 0.6667, the results are the
same. Policy (1, 1) is optimal throughout. For the other fixed points, we find
that (0, 1) is initially optimal, but early on there is an optimal switch to the
policy (1, 1). The system never optimally converges to A031 in contrast to the
case of fixed policy. Policy is dependent on initial values, but not in the same
way that we observed in the previous section.

Table 9 (Switch points for Hamiltonian paths when c = 0.295)
I0H Initial (f∗H , f

∗
L) ∆f∗H ∆f∗L IH at switch IL at switch I∗H

0.6667 (1, 1) None None N/A N/A 0.6316
0.7018 (0, 1) 0→ 1 None 0.7408 0.0728 0.6316
0.7362 (0, 1) 0→ 1 None 0.7558 0.0722 0.6316
0.7719 (0, 1) 0→ 1 None 0.7626 0.0717 0.6316
0.8070 (0, 1) 0→ 1 None 0.7692 0.0713 0.6316
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Figure 7: Evolution of system towards fixed point. I0H = 0.7369, c = 0.295.
Legend: Green=f∗H , Red=f

∗
L, Black=IH , Blue=IL

An example of one of these paths is depicted in Figure 7. The behaviour is
different to what we observed in Figure 6. There is a switch point early on, after
which optimal policy remains at (1, 1). Prior to the switch point, prevalence of
the H strand rises. It then undershoots, growing slightly to converge to the low
prevalence steady state. The intuition behind the switch point is that initially,
prevalence of the H strand is not high enough to justify full treatment - the
marginal cost of an additional infected person is lower than the relative cost of
treatment. As IH rises, there comes a point when this marginal cost exceeds the
relative cost of treatment. At this point, policy switches to treating everyone.
Next, we turn to the example of high costs, when c = 0.5. Only three of

our five initial points have a Hamiltonian path. Despite each path beginning
with an optimal policy of (0, 1), similar to our results in the previous section,
all three paths switch to the policy (1, 1) after a short period and converge to
the fixed point with lower infection level. Thus, the paths we derived in the
previous section when c = 0.5 were not Hamiltonian along their entirety. The
details of the switch points when c = 0.5 are given in the table below:

Table 10 (Switch points for Hamiltonian paths when c = 0.5)
I0H Initial (f∗H , f

∗
L) ∆f∗H ∆f∗L IH at switch IL at switch I∗H

0.6667 (0, 1) 0→ 1 None 0.7608 0.0619 0.6316
0.7018 (0, 1) 0→ 1 None 0.7640 0.0617 0.6316
0.7369 (0, 1) 0→ 1 None 0.7671 0.0615 0.6316

Figure 8 depicts an example of such a path. The behaviour of the system is
similar to the case when c = 0.295. There is a sharper rise in IH than in the
previous example, but the system still converges to A131 after the policy switch.
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Figure 8: Evolution of system towards fixed point. I0H = 0.7018, c = 0.5.
Legend: Green=f∗H , Red=f

∗
L, Black=IH , Blue=IL

There are several points to take away from these simulations. First, when
policy is variable, all simulations converge to the fixed point A131. This is inter-
esting because, despite the policy (0, 1) being optimal on segments of some of
the paths, it is still optimal to converge to the low infection state. In constrast,
a policymaker who has to fix policy in advance is more likely to choose not
to treat the H strand as costs rise, allowing it to converge to a higher steady
state prevalence level. Thus, the simulations suggest that it is always better to
attempt to lower prevalence of theH strand as much as possible. Another obser-
vation to note is that when costs are suffi ciently low, our paths are simple, with
no switch points. They retain the same optimal policy that they began with,
namely (1, 1). Thus, fixed policy is optimal at low cost levels. As costs rise, the
paths become more complex. We observe switch points and the policymaker is
better off if she has flexibility in her actions.

6 Conclusion

This paper has explored an SIS model with two variants of infection differ-
entiated by transmission risk. It has been shown that there are two types of
steady states. First, there is a set of fixed points with one treatment level at
the boundary and one at an interior level. These fixed points form two lines
in (IH , IL) space and are only feasible under certain parameter combinations.
Only the total level of infection is pinned down here; the distribution of this
total infection between the two strains will depend on initial levels. Optimal
policy for these steady states is derived; along the path, optimal policy is always
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at a boundary, after which it may switch to an interior level when steady state
is reached. There are also asymptotic fixed points that involve asymptotic erad-
ication of one strand, while the other strand remains endemic. Under the same
parameter combinations that eliminate the interior fixed points, we are left only
with those asymptotic fixed points that asymptotically eradicate the L strand,
leaving the H strand to prevail. This is interesting as it suggests that sometimes
it may be optimal for the policymaker to focus treatment on the less infective
strand, which may seem counterintuitive. It was also shown that simultaneous
asymptotic eradication of both strands is not possible.
Simulations focus on the case when only asymptotic eradication of the L

strand is feasible. We consider two cases: when the policymaker must keep
policy fixed throughout the period, and when policy is flexible. We vary costs
and compare policy across different parameter combinations. The results are
insightful. When policy is fixed, there is a clear relationship between costs and
optimal policy. For low costs, optimal policy is always to treat everyone. As
costs rise, there is a small range where optimal policy is dependent on initial
value. The closer is initial infection to the no-treatment steady state, the more
likely it is that optimally the H types are left untreated. As costs rise even
further, it is optimal not to treat the H strain, regardless of initial prevalence.
These are intuitive results; the higher the cost, the more likely we are to curb
expenditure.
When policy is allowed to vary, we observe further intriguing results. In our

examples, all paths converge to the steady state where the H strain is treated,
even at high costs. At low costs, optimal policy is fixed and there is no added
benefit from being able to vary policy. As costs rise, policy exhibits switch
points. Optimal policy begins by not treating the H infection and switches to
full treatment after a short period of time. Thus, as costs rise, there is added
benefit from variable policy.
There are several points to take away from these results. First, there are

many possible steady states, and feasibility will depend on paremeters. When
there is a large difference between the infectivities of the two strains and low
natural rate of recovery, it may be that the policymaker can only hope to as-
ymptotically eradicate the L strand, while making a decision on whether or not
to treat the H strand. Second, simulations show that if this is the case, optimal
fixed policy is clearly related to cost of treatment. Optimal variable policy will
always point the policymaker towards eventually treating the H strand and con-
verging to the steady state with lower overall infection. Therefore, our policy
recommendation is that treatment agencies should negotiate flexible terms with
their suppliers and their governments, so that they have the option to change
policy over time if it is optimal.
Further research should consider extending the simulations to look at other

parameter combinations. In particular, the interior fixed points have not been
simulated here. This is an essential next step in order to make a complete
judgment on optimal policy under different parameter scenarios. It would also
be interesting to extend this model to include protection via vaccination as
another instrument available to the policymaker.
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