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1 Introduction

An equity index is a composite measure that tracks the performance of a specific group

of stocks, serving as a benchmark for assessing market trends and comparing investment

returns. Index reconstitutions induce large demand shifts from passive index funds that

mimic the index portfolio. The index effect refers to the abnormal return experienced by

stocks added to or removed from a major equity index, initially documented in the seminal

works of Shleifer (1986) and Harris and Gurel (1986). This critical observation challenges

the efficient market hypothesis and creates opportunities for investors to capitalize on

market inefficiencies.

The efficient market hypothesis proposes that the price of a stock equals its expected

future cash flows discounted by systematic risk. This perspective in neoclassical finance

theory results in virtually flat demand curves for stocks (see Petajisto (2009) for detailed

derivations). Thus, if one believes that changes in stock indices do not contain any

information, it becomes challenging to rationalize the observed index effect within the

framework of the efficient market hypothesis. Consequently, initial investigations into this

subject either inferred that index changes are not devoid of information (Denis et al., 2003;

Chen et al., 2004; Cai, 2007) or that the market’s efficiency is compromised, leading to

downward-sloping demand curves for stocks (Shleifer, 1986; Harris and Gurel, 1986).

Assessing the potential factors that contribute to the index effect, particularly fo-

cusing on demand and information, has become progressively intricate due to a recent

observation: Despite the significant growth of passive investing, there has been a secular

decline in the magnitude of the index effect in recent decades. This observation presents

a puzzling scenario since, even when assuming a downward-sloping demand curve with

a constant elasticity, one would expect larger price reactions if demand shocks were in-

creasing in magnitude. This study aims at revisiting the index effect literature in search

for origin of the observed abnormal returns, their determinants, and the reason for their

decreasing trend. By addressing these research questions, this study provides insights

into the evolving nature of the efficiency in financial markets. My findings show that

demand is the main driver of the index effect, and the decreasing trend of index effect

is due to the general flattening of stocks’ demand curves, which extends beyond index

reconstitutions and their associated informativeness.

Theories that attempt to explain the index effect are broadly classified into demand-

based and information-based groups. The former group associates abnormal returns with

the inelastic demand of passive index followers who buy the added firms and sell the

deleted firms regardless of their prices. On the other hand, the latter group subscribes to

the notion that index events convey new information to the market, which in turn moves
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the prices. Especially when an index is not rule-based, as is the case with the S&P 5001,

investors naturally assume that there is a rationale behind every index decision and that

index announcements convey information. The S&P 500 index is an ideal candidate for

investigating the information content of index events due to its non-mechanistic nature

and reliance on subjective decision-making. The index committee, composed of financial

experts with first-hand information, makes all decisions, thereby rendering their deter-

minations indicative of relevant underlying information in the eyes of the market. In

contrast to fully transparent and rule-based indices, information-based explanations hold

significant relevance for subjective indices such as the S&P 500.

To assess the relative explanatory power of demand-based and information-based the-

ories in explaining the index effect, I propose a novel identification that shifts the focus

from the added and deleted firms to other index members that were not actively involved

in the reconstitution events. The size of added and deleted firms often differs signifi-

cantly, resulting in a disparity in their respective portfolio weights. As a result of this

asymmetry between the weight of added and deleted firms, the weight of other index

firms in the portfolio must change to maintain a total weight of one. These firms are

referred to as index incumbents, as they were index constituents both before and after

the reconstitution event. The sole effect of reconstitution on these firms is the possible

adjustment of their weight in the index composition and the following mechanical re-

balancing of index trackers. Therefore, index events are free of any information about

these firms, and any abnormal return on these stocks around the reconstitution can be

associated with demand. Studying the effect of such information-free demand shifts on

incumbents’ prices enables me to predict what would be the abnormal returns for the

added and deleted stocks if there was no informational component in the index effect.

In other words, this strategy enables me to pin down the counterfactual price reaction

to an information-free demand shift and to juxtapose this counterfactual with the actual

abnormal returns observed on additions and deletions.

The first contribution of this paper is to explore the driver and determinants of index

effect. I empirically link the size of the price pressure experienced by a stock to the

magnitude of the shock in its index weight. My results show that the observed abnormal

returns on additions and deletions are in the same order of magnitude that an information-

free demand shift predicts, implying that demand is the primary driver of the index effect.

1Different stock market indices use varying methods and criteria to select and weigh their constituent
stocks. Some indices, like the FTSE and NASDAQ, are fully transparent and rule-based, making it rela-
tively manageable to predict which stocks will be included or excluded (Danbolt et al., 2018). However,
other indices like the Russel and CRSP are also rule-based and transparent, but their changes are not
entirely predictable (Chang et al., 2014; Heath et al., 2020). Finally, there are indices like the S&P
family, whose inclusion or exclusion of stocks is decided by a committee and does not follow a fixed
schedule.
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Although earlier studies such as Denis et al. (2003) present compelling evidence for the

informativeness of index decisions in an older sample of additions, my analysis shows that

this phenomenon no longer seems to hold. The key finding is that demand independently

accounts for the entire average effect size. In other words, to justify the average abnormal

return on added and deleted stocks, generally known as the index effect, demand-based

explanations are sufficient. Information-based explanations2 can be compared in analogy

to regressors with statistically significant coefficients which do not significantly contribute

to the overall explanatory power of the model (i.e., the R-squared value).

The second contribution of the paper, which pertains to methodology, is a novel iden-

tification strategy to isolate the price effects of a pure demand shift, as distinct from

price changes due to fundamentals or news. The challenge in accurately estimating micro

elasticities in a reduced-form fashion is that the effects of demand and information on

prices are often convoluted, especially when incorporating substantial demand shifts in

estimations. This problem is the principal criticism leveled at studies that estimate the

elasticities using the price effects of index additions and deletions. By shifting the focus

from an information-intensive demand shift on additions and deletions to an information-

free demand shift on index incumbents, my findings show that, holding all other factors

constant, a demand shock equivalent to one percent of the total shares outstanding gen-

erates a price movements of roughly 40 basis points, implying a micro elasticity of index

funds’ demand in the order of −2.5.

I derive a measure, which I term as Mechanical Rebalancing Flow (MRF), that cap-

tures the aggregate inelastic demand shift of all passive index trackers. Specifically, I

define MRF as the amount of money pumped into or withdrawn from stocks by passive

funds purely due to the adjustment in index composition relative to the stock’s market

capitalization.

The findings of this study indicate the following. First, MRF, as an instrument for

demand shifts, is positively associated with the price reaction, volume of trades, and

volatility of prices around the index reconstitutions. However, the relationship between

2The literature review in the following section will highlight that information-based explanations
for the index effect can manifest in various forms in addition to the literal meaning of information,
including investor attention, market awareness, liquidity enhancement, and a reduction in information
asymmetry. It is crucial to emphasize that not all factors outside the demand realm can be classified
as information. Hence, the term “informational components” is prudently employed instead of “infor-
mation” to emphasize the diversity of these factors. The paper rules out the aggregate net effect of
such informational components but doesn’t comment on every one of such explanations. This decision is
partly because some informational components, such as market awareness, move slowly and do not have
an adequate measure in daily frequency. Consequently, any analysis involving them must inevitably use
an extended timeframe which makes it unreasonable to attribute abnormal returns that occurred in a
few days to such slow-moving variables, even if the abnormal returns are assumedly realized due to the
market participants expecting an improvement in these variables.
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price movements and MRF weakens over time, with the majority of effects being driven

by the earlier part of the sample. This result suggests that while the demand curves for

stocks generally slope downward, they have significantly flattened in recent years. This

critical finding of the paper is the key to address the puzzling phenomen of shrinking

index effect magnitude despite the surge in passive investing. Second, I show that the

risk of arbitrage activity, measured as the residual of regressing one stock’s excess return

on that of a group of possible substitudes, acts as a channel moderating the effect of

demand shifts on prices, such that prices of stocks with close substitutes that are hence

easier to engage in arbitrage activity are less sensitive to demand shifts. This empirical

finding also reveals that the reduction in price impact multiplier, which is the negative

inverse of the price elasticity of demand for stocks, is partially due to a documented

decrease in overall arbitrage risk of stocks. Third, the risk of arbitrage activity and hence

micro price impact multiplier are both strongly linked to the overall capability of the

market to provide liquidity. While these variables generally exhibits a decreasing time

trend, they spike during financial crises and the COVID-19 pandemic when there was a

marketwide liquidity shortage.

This study also contributs to the literature on predictable price pressure3. To the

best of the author’s knowledge, this research is the first to show that abnormal returns

are not only observed among additions and deletions during index reconstitutions but

also among other index incumbents. These abnormal returns that depend on the size

and direction of incumbents’ weight adjustment, are roughly - 4 and +4 bps, respectively

in the first and last quartile of weight adjutments. The sign of these abnormal returns

depends on whether the added stock is of a larger size or the deleted one. In cases

where the addition is larger, index incumbents experience negative abnormal returns as

index funds need to sell their holdings in order to allocate a larger weight to the newly

added stock. Conversely, when the deletion is larger than the addition, index incumbents

exhibit positive abnormal returns. These epirical findings offer valuable insights into the

broader implications of index composition changes, as they happen around the effective

day while the index decisions were announced in advance rendering these weight shifts

broadly predictable.

The closest empirical works to this research are Pavlova and Sikorskaya (2022), and

Greenwood and Sammon (2022). Pavlova and Sikorskaya (2022) investigate the effects of

3Among others, Hartzmark and Solomon (2022) show that uninformed cash flows forecast aggregate
market stock returns, Parker et al. (2020) show mechanical re-balancing by target date funds influences
the crosssection of stock returns and overall market dynamics, and Lou et al. (2013) show that the
treasury security prices in the secondary market decrease significantly in the few days prior to treasury
auctions and recover shortly thereafter, while the time and amount of such auctions are announced in
advance.
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stock membership in multiple indices to funds’ demand, prices, and expected returns using

an extensive group of US equity indices. In a contemporary contribution, Greenwood and

Sammon (2022) explore five reasons behind the decreasing magnitude of the index effect

and conclude that the decline is akin to other anomalies that tend to diminish once they

become well-known. My research differs from theirs for its focus on overall sensitivity

of stock prices to demand shifts, beyond index additions and deletions. Specifically, I

establish that the average magnitude of the index effect can be primarily explained by

a demand model featuring time-varying price impact sensitivity and the decline in the

index effect is attributable to the flattening of stocks’ demand curves, which extends

beyond index composition changes and their potential informativeness.

The paper proceeds as follows: Section 1.1 presents a literature review on the index

effect and explains the proponents of demand-based and information-based explanations

in more detail. Section 2 sheds light on the demand shift measure construction and

presents the theoretical framework, identification strategy, and hypotheses. Section 3

describes the data. Section 4 presents the empirical results, and the last section concludes.

1.1 Literature Review

The literature on the index effect offers various theories to explain the size, permanency,

and symmetry of the effect for additions and deletions. See Afego (2017) for an extensive

review of this literature. These explanations fall into two main categories: demand-based

and information-based theories.

Demand-based theories attribute the index effect to the large and inelastic demand

from passive index trackers. Notable within this category are the price pressure and

imperfect substitute hypotheses. The price pressure hypothesis asserts that short-term

demand shifts lead to temporary price changes (Harris and Gurel, 1986; Mase, 2007;

Danbolt et al., 2018). The imperfect substitute hypothesis suggests long-lasting price

effects because index funds’ excess demand could be met without a price change only

if stocks had perfect substitutes (Shleifer, 1986; Beneish and Whaley, 1996; Lynch and

Mendenhall, 1997; Kaul et al., 2000; Wurgler and Zhuravskaya, 2002; Fernandes and

Mergulho, 2016).

Information-based theories propose that index reconstitutions somehow change the

market expectation of the involved stock and thereby communicate new information

about firms’ prospects. These explanations encompass various hypotheses based on dif-

ferent driving forces.

The literal meaning of information serves as the first proponent of information-based

explanations. From this viewpoint, inclusion in a major index indicates the firm’s recog-

5



nition as an industry leader or an enhancement in management quality. This hypothesis

finds support in the strong inclination of the index committee to minimize index turnover.

A low index turnover is crucial in enhancing index popularity as it facilitates index repli-

cation for followers while reducing tracking errors and transaction costs. Consequently,

the index committee strives to include only those stocks in the index that are reasonably

expected to maintain long-term and robust membership. Along these lines, firms also take

pride in their inclusion in the S&P 500 index and highlight its subjective decision-making

in their market communications. For example, Red Hat communicated its inclusion in

S&P as follows4: “Red Hat was chosen by Standard and Poors for inclusion in the

Standard and Poors 500 stock index... It includes 500 leading companies of the U.S.

economy, ... The inclusion of Red Hat into the S&P 500 is an important recognition

and a source of pride for Red Hat associates ....”

Denis et al. (2003) examine the informational content of S&P 500 reconstitutions by

investigating analysts’ earnings forecasts around the index event and comparing post-

inclusion realized earnings to pre-inclusion forecasts. Their findings reveal that analysts

exhaustively revise their forecasts upward following a firm’s inclusion in the S&P 500,

leading to a significant subsequent reduction in their forecast errors. Their analysis

strongly suggests that S&P 500 index inclusions were not devoid of information during

their sample period. In another study, Cai (2007) examines information content of S&P

500 index changes by examining the price and volume reaction of the industry and size

matched firms. He also finds that index addition conveys favorable information about

the added firm and its industry. It is worth noting that both mentioned studies utilize

a sample predating the 2000s. Contrary to theirs, my analysis shows that S&P 500

additions and deletions no longer seem to convey information.

The second information-based explanation suggests that index effects stem from liq-

uidity changes. The liquidity hypothesis proposes that analysts’ increased attention

to added firms improves information production, reducing information asymmetry and

boosting liquidity. Improved liquidity then results in lower required returns and higher

prices for added stocks (Amihud and Mendelson, 1986; Chen et al., 2004). While past

studies partially support this idea, my analysis yields mixed outcomes. Investigating liq-

uidity shifts in added and removed stocks, I find inconsistent bid-ask spread changes and

temporary trade volume surges around the event, reverting soon after.

Closely tied to the liquidity hypothesis is the investor attention hypothesis, suggesting

that heightened visibility spurs improved management performance (Denis et al., 2003).

However, in a recent study, Bennett et al. (2021) demonstrate that the greater public

4announcement can be found at https://www.redhat.com/en/blog/red-hat-included-in-sampp-500-
index
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scrutiny could also hurt a firm’s performance. They show that elevated attention after

index inclusion often associates with declining post-inclusion performance. My study

expands their analysis to index deletions and finds that not only does performance decline

for added firms, but it also improves for discretionary deletions - firms removed from the

index not due to delisting but by index committee choice.

The last form of information-based theories is the awareness hypothesis, which posits

that the inclusion of a firm in an index enhances investors’ awareness of its existence.

Drawing upon Merton et al. (1987) model of market segmentation, this hypothesis sug-

gests that if certain investors are only aware of a subset of all stocks and hold only

those stocks, they may lack adequate diversification and therefore demand a premium,

known as the shadow cost, for the nonsystematic risk they bear. When a stock enters the

S&P 500, broader ownership due to increased awareness can lower the required return by

reducing the shadow cost.

The investor awareness hypothesis is particularly potent in justifying asymmetric ef-

fects observed on additions and deletions in their size and permanency. As Chen et al.

(2004) puts it, “while more investors become aware of stocks added to the index, the

number of investors aware of deleted stocks may not actually fall because it may be dif-

ficult for investors to become ‘unaware’ of those stocks.” Similar to Chen et al. (2004),

my findings reveal that the average cumulative abnormal return for additions stabilizes

at a positive level after the event. However, my findings also show that this stabiliza-

tion pattern extends to discretionary deletions when they are distinguished from forced

deletions.

2 Theory and Identification

The total weights of constituents in the index portfolio naturally always add up to one.

During an index reconstitution event, the weights of added and dropped stocks typically

differ from each other5. As a result, the weights of the other index incumbents need to

adjust in order to maintain a total weight of one. The first part of this section employs

the weighing scheme employed by S&P 500 to quantify the demand shifts that arise from

the mechanical portfolio rebalancing carried out by index funds. The second part outlines

the identification strategy and formalizes the hypotheses to be tested.

5In section 4.2, I will demonstrate that the average index addition is more than twice the size of the
average discretionary deletion.
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2.1 Theoretical Framework

The weight of an index constituent j in S&P 500 at the closing of the trading day t is

calculated by the following equation

wj
t =

P j
t S

j
t IWF j

t∑N
i=1 P

i
tS

i
tIWF i

t

, (1)

where, for the day t and stock j, P j
t is the stock price, Sj

t is the total shares outstanding,

and IWF j
t is the Investable Weight Factor6, all measured at the close of markets. N is

the number of constituents in the index, typically 500 for S&P 500. IWF is the measure

of float adjustment, which is an attempt to enhance the investability of the index by

excluding shares of strategic shareholders in calculating firm market capitalizations7

Index level8 is calculated as

Indt =

∑N
i=1 P

i
tS

i
tIWF i

t

Divisort
, (2)

in which the denominator is the index divisor at the close of day t. The index divisor serves

two purposes: first, dividing the free-float market value of the index by this factor does a

scaling that helps market participants to work with a more easily handled number (e.g.,

2000) rather than dealing with ten or more digits when reported in dollars. Second, and

more crucial to this research, it is used as a level corrector to maintain the continuity of the

index level following the implementation of corporate decisions, index reconstitutions, or

other non-market-driven actions. Hence, the index divisor serves as the channel through

which the difference in weight of added and deleted stocks affects the weights of other

constituents in the index, ensuring that the sum of weights remains equal to one.

Equation 2 yields
∑N

i=1 P
i
tS

i
tIWF i

t = Indt ∗ Divisort, which enables us to rewrite

Equation 1 as

wj
t =

P j
t S

j
t IWF j

t

Indt ∗Divisort
. (3)

6IWF of a stock is simply the ratio of floating shares to total outstanding shares. For instance, an
IWF of 0.8 for stock j indicates that 80 % of total shares outstanding of that stock are freely tradable
and available to the marketplace, and the rest 20% are held by strategic investors that are not expected
to liquidate their position any soon. IWF ’s are crucial data used in determining constituents’ weights.
They are the key missing point preventing investors without S&P data subscription from replicating the
index even if they have the list of included stocks.

7The list of shareholders that S&P deems strategic goes long. The most important are control groups,
seatholders, publicly traded companies, and government agencies. For an extensive list, please consult
S&P Float Adjustment Methodology document at the S&P Dow Jones Indices website at this address:
https://www.spglobal.com/spdji/en/documents/index-policies/methodology-sp-float-adjustment.pdf

8Index level in this paper always refers to the S&P 500 price index level, which is commonly referred
to in the news and statistics. S&P 500 total and net return index are then calculated based on the price
index.
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Therefore, the ratio of the weights of an index constituent j in the closing of two consec-

utive trading days would be

wj
t+1

wj
t

=
Rj

t+1

RInd
t+1

∗
Sj
t+1

Sj
t

∗
IWF j

t+1

IWF j
t

∗ Divisort
Divisort+1

, (4)

where Rj
t and RInd

t are respectivey the gross returns of the stock j and the S&P 500 price

index in day t. The decomposition in Equation (4) shows that any change in the weight

of a stock from one day to the next comes from one or some of these four ratios.

The first ratio in Equation (4) represents the stock price growth relative to the index.

It is important to note that for an ideal index fund that closely replicates the index

portfolio, changes in this component of weight do not necessitate portfolio rebalancing9.

In other words, if there are no shocks affecting the stocks and only price movements

occur, the value-weighted portfolio will remain correctly value-weighted.

In contrast to the first ratio, index funds must rebalance their portfolios if any of

the remaining three ratios in Equation 4 is not equal to one. Although daily changes in

index divisor are widespread, the amount of weight change that firms incur only because

of the modification in the index divisor is free of information about each specific firm.

Even the changes on the IWF and outstanding shares do not contain new information

about stocks since index maintenance requires a holding period before implementing the

changes on their calculations10. Except in rare cases, these numbers are often revised

only on annual rebalancings.

Aiming to find a measure of fund flows implied by the index funds’ mechanical rebal-

ancings, I define the shocks to the weights of index incumbents that require rebalancing

for index followers as ∆wj
t+1 that is calculated as follows:

∆wj
t+1 = wj

t ∗
Sj
t+1

Sj
t

∗
IWF j

t+1

IWF j
t

∗ Divisort
Divisort+1

− wj
t . (5)

Intuitively, ∆wj
t+1, is the weight of stock j in the index portfolio one moment before

9For instance, assume the index return is zero in a day t (RInd
t = 1) and some stock j has a return

of 1% on that day (Rj
t = 1.01). Also, assume the other three ratios are equal to one, which means there

is no stock repurchase or equity issue for this stock, no change in the number of floating stocks, and no
change in the index divisor on that day. Suppose the index fund already had the right number of shares
at the previous day’s closing (i.e., proportional to the weight of this stock in the index at the close of
the market). In that case, it will automatically have the correct number of shares at the closing of day t,
which is, in fact, the same number of shares! However, this number of shares results in 1% more weight
in the index today than the previous day, precisely as it should. I assumed this fund had no net inflows
or outflows on this day.

10For this reason, I also use SPDJI data as reference for the number of shares outstanding in the
calculation of weight surprises.
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the markets opened on the morning of the day t + 1 minus the weight this stock had at

the close of trading at day t. To fix ideas, assume the index divisor increases overnight

after the close of markets in day t (Divisort < Divisort+1,) which means that the total

floating market value of index constituents has increased after the close of trading (for

instance, because the next day is the effective day of an index reconstitution in which a

large firm replaces a small firm in S&P 500.) Then the weight of an average firm (with

no change in S and IWF ) in the index has to decrease, and ∆wj
t+1 will be negative since

Divisort/Divisort+1 < 1.

I define the measure of fund flows implied by mechanical (information-free) rebalanc-

ing as follows:

MRF j
t+1 =

At+1∆w
j
t+1

Sj
tP

j
t

. (6)

MRF stands for Mechanical Rebalancing Flow, and At+1 =
∑
AF

t+1 is the total amount

of dollars invested in passive funds are benchmarked against S&P 500 in the opening of

the day t + 1. MRF measures the surprises in the inelastic demand of an ideal index

fund, similar to the measure constructed and used in Pandolfi and Williams (2019) for a

weight-capped bond market index. Here, instead of the cap on the constituents’ weights,

MRF is built upon the weight spillovers on index incumbents through the index divisor

changes.

To put it simply, MRF j
t captures the amount of money that will flow into or out

of an stock j at day t, relative to its market value in the previous trading day, as a

result of mechanical rebalancing of index followers regardless of the stock’s individual

characteristics or fundamentals. Based on this intuitive definition, I can extend the

definition of MRF to additions and deletions, in which case I will use w of the added

stock or −w of the deleted stock instead of ∆w in the MRF formula. Note that, for

example, for an addition in day t, ∆w reduces to w simply because that stock had zero

weight in the index portfolio on the previous day.

2.2 Identification and Hypotheses

The identification assumption in pinning down the causal effect of demand in this paper

is that a stock whose weight has increased (decreased) by an amount of ∆wj
t , and a

company that has been added to (dropped from) the index in day t with a weight of

wi
t, both experience an equal inelastic demand from the index funds up to the level of

their market caps. In an overly simplified example, if these two firms had similar market

capitalizations, and wi
t = ∆wj

t , the experienced demand shift on these two firms would

be identical. Thus, the difference between the experienced abnormal returns on such two
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stocks must be attributed to the non-demand-driven components of the index effect.

The central hypothesis revolves around testing the effect of MRF , as the measure of

information-free demand shifts, on prices and other variables of interest. Formally, I will

run the following regression in time-invariant settings:

yjt = βMRF j
t + φXjt + θt + θj + εjt, (7)

where yjt is the dependent variable, θt and θj are fix effect dummies, and Xjt represents

other control variables. Notably, β will quantify the causal effect of nonfundamental

demand shifts on the outcome variables. For the models with time varying sensitivity, I

will estimate the conditional model by replacing β with βt in the equation as follows:

yjt = βtMRF j
t + φXjt + θt + θj + εjt, (8)

in which βt =
∑

p βp1(period = p). This approach allows me to estimate different

coefficients for different periods when the sample time in devided into multiple periods.

3 Data

The primary sample is the list of S&P 500 constituents and their daily weights in the

index composition. I obtain this data directly from S&P Dow Jones Indices (SPDJI.)

Daily stock data and quarterly fundamentals are from CRSP and Compustat. Risk-free

return and market return are from Kenneth R. French’s website11. Index funds list, their

prospectus benchmark, and their assets under management are from Morningstar. Index

composition changes for S&P 500, S&P 400, and S&P 600 come from Siblis research. The

sample period is January 2000 to June 2021, determined by the daily index constituents’

data from SPDJI. All daily measures from CRSP are winsorized at 0.1% from each tail.

I received the list of index composition changes separately from Siblis research and

SPDJI and combined them. In cases of mismatch in effective dates between the two lists, I

obtain the correct effective date of index changes directly from the list of daily constituents

data from SPDJI. In case of a mismatch in announcement dates and tickers, I manually

correct the list based on CRSP data and financial news online sources. This combined list

includes 1143 index composition changes. From the combined list, I dropped 37 events

(74 additions and deletions) in which a stock was added to the index and then quickly

removed. These are either spin-offs of an S&P 500 firm that S&P decided not to keep in

the index or placeholders that are stock in S&P 500 to keep the number of constituent

11www.mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html
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firms at 500 when there was a gap between the addition’s and deletion’s effective dates.

I further dropped 9 cases (18 additions and deletions) where the addition was created

due to a name change on the deletion (for example, as the result of a merger), and index

funds did not have to buy or sell any shares.

The final sample contains 528 additions and 523 deletions, all successfully identified

in CRSP. The number of additions and deletions differ because, in five cases, S&P added

a second share class of another S&P 500 firm, which does not count against the number

of constituent firms. Thus, these additions were not coupled with a deletion. As a

result of such additions, S&P 500 currently has 505 securities. Lastly, these 1053 index

events list 424 announcement dates and 446 effective dates that will be used to make the

sample index incumbents. Out of 528 additions, 264 and 4 additions were migrations

from S&P 400 mid-cap and S&P 600 small-cap indices and from 523 index deletions,

131 and 18 deletions were migrations, respectively to S&P 400 mid-cap and S&P 600

small-cap indices.

I further divide the index events into forced and discretionary based on the trading

status of the deleted firm after the event. Forced index events are those in which the

index deletion was delisted entirely from the exchange within a week12 from the deletion

effective date. Regardless of why these stocks were delisted, the index committee had

to drop them from the index simply because they wouldn’t be trading anymore. The

discretionary events are those that were not forced. In other words, the index committee

chose to drop those stocks, even though they continued trading after the event.

Abnormal returns are calculated using Carhart (1997) four-factor model. The esti-

mation window is 252 days (one year) using daily stock returns, requiring at least 100

observations within the window. The estimation window ends two weeks before the effec-

tive day for additions13 and deletions to reduce the likelihood that the model estimation

would be affected by the index event. For index incumbents, I used the most recent

estimates.

The sample of index incumbents includes all S&P 500 securities, in the reconstitution

effective dates, except the stocks that were just added. I further drop the forthcoming

deletions by filtering on having the incumbents still present in the index within one week.

Table 1 presents the summary description of the data.

Table 1 also reports the summary description for index additions and deletions, sep-

12I verify that the choice of the period does not have any meaningful effect on the results. From all
the deletions that were delisted within three months of the effective date, more than 80% were already
delisted one day after the effective day.

13For the parts of analysis related to abnormal returns, a further number of 63 additions were excluded
either because they were new securities and didn’t have a price observation before the event (for example
they were the result of a merger between two S&P firms), or failed to have the minimum number of
required observation for coefficient estimations.
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Table 1: Summary statistics

Variable Mean p25 p50 p75 SD N
Index Incumbents

MCapeff (B$) 29.56 12.66 27.05 6.35 60.48 221716
Weighteff (%) 0.20 0.09 0.18 0.05 0.36 221716
MRF (∗10−4) 0.01 -0.09 0.04 -0.23 8.32 221716
βCAPM 1.00 0.96 1.24 0.71 0.47 221715
Iwf 0.97 1.00 1.00 1.00 0.09 221716
Growth 0.41 0.39 1.00 0.00 0.43 221716
TurnOver 0.01 0.01 0.01 0.00 0.01 221716
BidAskspread (%) 0.22 0.04 0.11 0.02 0.64 214289
Ranget 0.03 0.02 0.04 0.01 0.02 221716
Ann to Eff 4.81 5.00 6.00 3.00 2.07 221716

Index Additions
MCapeff (B$) 13.53 9.68 13.37 6.16 31.93 471
Weighteff (%) 0.10 0.06 0.09 0.05 0.14 528
MRF (∗10−4) 417.54 371.35 531.81 272.97 211.60 471
β 1.09 1.02 1.36 0.73 0.56 464
Iwf 0.94 1.00 1.00 1.00 0.12 528
Growth 0.61 0.66 1.00 0.25 0.40 528
Turnover 0.03 0.02 0.03 0.01 0.02 528
Bid Ask spread (%) 0.20 0.04 0.13 0.02 0.58 515
Ranget 0.03 0.03 0.04 0.02 0.03 471
Ann to Eff 5.36 5.00 6.00 4.00 3.03 528

Discretionary Index Deletions
MCapeff (B$) 5.79 2.87 4.74 1.21 14.94 243
Weighteff−1 (%) 0.04 0.02 0.03 0.01 0.09 243
MRF (∗10−4) -395.78 -400.42 -263.32 -505.73 160.97 243
β 1.30 1.28 1.65 0.85 0.65 243
Iwf 0.96 1.00 1.00 1.00 0.11 243
Growth 0.19 0.00 0.37 0.00 0.34 243
Turnover 0.04 0.03 0.05 0.02 0.03 240
Bid Ask spread (%) 0.78 0.10 0.35 0.05 2.18 233
Ranget 0.07 0.05 0.08 0.03 0.06 240
Ann to Eff 5.35 5.00 6.00 4.00 1.98 243

Forced Index Deletions
MCapeff (B$) 17.38 10.73 22.11 5.84 18.23 278
Weighteff−1 (%) 0.12 0.08 0.15 0.04 0.13 278
MRF (∗10−4) -392.18 -355.63 -283.41 -498.08 149.70 278
β 0.81 0.71 1.06 0.46 0.54 280
Iwf 0.98 1.00 1.00 1.00 0.08 278
Growth 0.37 0.00 0.71 0.00 0.42 278
Ann to Eff 5.24 5.00 6.00 3.00 3.80 278

This table presents the summary description of sample stocks. Deleted firms are divided into forced and
discretionary. Reported β is from the market model using an estimation window of 252 days (one year),
requiring at least 100 observations within the window. IWF is the investable weight factor. Bid ask
spread is reported as the percentage of mid-price. If necessary, the unit of measure is reported before
the variable’s name. The sample period is (2000-01, 2021-06).
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arating deletions into forced and discretionary. Regarding market capitalization, index

additions are larger than discretionary index deletions but smaller than forced index

deletions. Index additions exhibit a smaller bid-ask spread, while their turnover is com-

parable. Most liquidity measures are missing for forced deletions since they don’t have

an observation in CRSP on the effective day, so they were not reported. The distance

between announcement day and effective day for both additions and deletions is highly

concentrated around five trading days. For index incumbents, on each reconstitution

day, I take the minimum of this distance between all additions and deletions on that day,

capped at two weeks.

Index funds’ data are obtained from Morningstar. From the universe of passive funds,

I collected the data for the funds tagged as index funds (both open-end funds and ETFs)

and had S&P 500 as their primary prospectus benchmark. Figure 1 shows the total

assets under management of index funds and their their aggregate percentage holding of

an exemplary index firm with full float (IWF = 1.) In early 2000, index funds’ total

AUM was nearly USD 240 billion, and they collectively held about 2% of shares of a

full-float index firm14. In 21 years, the total AUM of index funds rose by more than ten

times to USD 2.5 trillion, and they were holding about 7% of total shares outstanding of

full float index firms. The difference in the growth of the two numbers shows that most

of the rise in the AUM of index funds comes from money inflow to these funds as opposed

to organic capital gains in the stock market.

4 Empirical Results

The first part of this section studies the effect of index reconstitutions on index incum-

bents. The other two parts focus on the added and deleted stocks. In the second part,

I will measure the abnormal returns of index additions and deletions and determine to

what extent a pure demand shift can justify them. The last part studies the long-term

returns of index additions and deletions and their fundamentals.

4.1 Index Incumbents

This section shows that the defined measure of mechanical demand, MRF, explains the

price reaction for index incumbents, quantifies the price impact and price elasticity of

demand, discusses the time trend of these variables, and pins down a model to form

14For firms that are not full-float, the percentage of shares held by index funds is reduced according
to their IWF . For example, the percentage of total shares outstanding collectively held by passive index
trackers in a firm with IWF = 0.5 is half of that of a firm with full-float, regardless of their market cap.
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Figure 1: Total assets under management and percentage holding of index funds

This figure shows the total assets under management of passive index funds benchmarked to S&P 500
and their aggregate percentage holding of stocks in (2000-01, 2021-06). The red line shows the assets
under management in USD trillions, and the blue line shows how many percentages of an index firm
with IWF = 1 is held collectively by index funds at each month.

a counterfactual information-free demand response on additions and deletions in the

following sections.

4.1.1 Price Impact

Figure 2 examines the relationship between the magnitude and direction of incumbents’

weight adjustment and their corresponding price reactions. To accomplish this, I parti-

tioned the incumbent sample into quartiles based on their MRF and calculated the mean

of the two-day cumulative abnormal return during the reconstitution’s effective date and

the preceding day for each quartile. The graph clearly illustrates a steady rise in returns

as MRF increases, indicating a positive association between the explanatory variable and

the return in a straightforward setting. The choice of the two-day period, including the

effective date and the preceding day, is motivated by the behavior of passive index funds.

Aiming to minimize tracking error, index funds rebalance their portfolios as close as pos-

sible to the actual reference change that would be either on the effective day or the day

preceding it.

Table 2 presents the association of MRF with returns using the regressions in Equation

(7). Each regression studies the impact of demand shift on a specific measure of price

changes. Consistent with demand hypotheses, all else equal, price reactions are larger

for stocks experiencing larger shifts in their weights. I focus first on the full sample
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Figure 2: Price reaction to nonfundamental demand shift

This figure shows the two-day cumulative abnormal return of index incumbents, in the effective date of
index reconstitutions and the day before it, in reaction to the change of their weight in the index portfolio.
Vertical axis represents the quartile of the demand shift, measured by MRF. The mean of MRF in each
quartile is shown by the red line. Navy blue bars represent 95% confidence intervals. Sample period is
(2000-01, 2021-06).

estimates and then divide the sample into two equal parts (each eleven years) to observe

the structural breaks. All regressions include controls in addition to stock and day fix

effects. Control variables are logMV (the logarithm of proprietary total market value),

IWF (proprietary float factor), βCAPM (loading on the market in the one-factor market

model), and the liquidity (average daily turnover of the stock in the previous month).

The full sample estimates in Table 2 show that a 1% MRF or equivalently, buying 1%

of shares outstanding, leads to about 24bps higher return in that trading day, from which

19 bps are realized just on the opening batch auction15. I define the daily opening return

of stocks as (P open
t /P close

t−1 − 1) corrected for dividends and stock splits. Interestingly, the

entire 23 bps price reaction in response to MRF ends up in the abnormal return of that

stock on that day. This fact shows that heterogeneity in the price movement of stocks

is due to the heterogeneous surprises in their weights. Thus, the market movement, size,

15The opening batch auction is a process that occurs before continuous trading begins for the day and
is used to determine the opening price for securities. During this time, buy and sell orders are matched
and executed at a single price point. The closing auction is similar to the opening auction in that it is
a process used to determine the closing price for securities, and it involves matching buy and sell orders
at a single price point. Market participants can enter orders to buy or sell securities at the closing price
during the closing auction. The auction is typically held a few minutes before the end of the trading day,
and the closing price is determined by the price at which the maximum volume of shares can be traded.
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Table 2: MRF and return

Dependent (1) (2) (3) (4) (5) (6) (7) (8) (9)

Variable Rett Rett−1 Retopent CAREff
Ann CAREff−1

Ann CAREff
Eff−1 AREff AREff−1 AREff−2

Full Sample (2000-2021)
MRF 0.237∗∗ 0.127 0.192∗∗∗ 0.420∗∗ 0.164 0.380∗∗ 0.256∗∗ 0.124 0.060

(2.16) (1.14) (2.80) (2.37) (1.51) (2.25) (2.33) (1.29) (0.71)
Adj. R-sq 0.372 0.346 0.352 0.017 0.017 0.015 0.014 0.012 0.011
N 221715 221715 221281 221692 221692 221715 221715 221715 221708

Early Sample (2000-2010)
MRF 0.491∗∗∗ 0.429 0.348∗∗∗ 1.082∗∗∗ 0.552∗∗∗ 0.972∗∗∗ 0.531∗∗∗ 0.441∗∗ 0.144

(2.77) (1.60) (2.61) (3.98) (3.03) (3.08) (2.97) (2.07) (0.99)
Adj. R-sq 0.371 0.353 0.296 0.018 0.019 0.015 0.014 0.013 0.011
N 127165 127165 126731 127152 127152 127165 127165 127165 127158

Late Sample (2011-2021)
MRF 0.096 -0.029 0.112∗ 0.047 -0.044 0.056 0.091 -0.035 -0.006

(0.81) (-0.34) (1.75) (0.28) (-0.36) (0.37) (0.83) (-0.38) (-0.08)
Adj. R-sq 0.379 0.311 0.494 0.018 0.020 0.018 0.018 0.014 0.011
N 94548 94548 94548 94538 94538 94548 94548 94548 94548

Early - Late
0.395∗ 0.458 0.236 1.035∗∗∗ 0.596∗∗∗ 0.916∗∗∗ 0.440∗∗ 0.476∗∗ 0.150
(1.85) (1.63) (1.60) (3.24) (2.72 ) (2.62 ) (2.1) (2.05) (0.92)

Controls Y Y Y Y Y Y Y Y Y
FE D & S D & S D & S D & S D & S D & S D & S D & S D & S

This table reports the results of estimating panel regression in Equation (7) for index incumbents. The
full sample includes all incumbent observations in the reconstitution days in the sample period (2000-01,
2021-06). The independent variable is MRF i

t , the surprise dollar amount of money flowed into stock
i at the reconstitution day t (proportional to the previous day’s market value) only because of the
mechanical change in its weight after the close of the previous trading day. Control variables are logMV
(the logarithm of proprietary total market value), IWF (proprietary float factor), βCAPM (loading on
the market in the one-factor market model), and the liquidity (average daily turnover of the stock in
the previous month). T-statistics based on standard errors double-clustered by stock and day are in
parentheses. Significance levels are marked as: ∗p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.

value, and momentum risk factors can not justify these stock-specific price movements.

Note that when there is a reconstitution in day t, S&P calculates the weight of the

added firm(s) and the new weight of all other index constituents after the close of the day

t − 1 when all close prices (and hence market values) are realized and reports the new

weight to all its index feed subscribers including index funds. To minimize their tracking

error, index funds try to rebalance their portfolio as close as possible to this time. For a

reconstitution at day t, an ideal index fund has two choices: the closing batch auction at

day t− 1 and the opening batch auction at day t. My results also support the conjecture

that most trading and price impact are concentrated in these two days. Studying the

price changes during the closing batch auction requires intraday data unavailable to the

author.

Columns (4) to (6) focus on the cumulative abnormal returns that stock experiences

conditional on the (predictable) demand shift that it will experience on the index recon-
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stitution. While column (4) shows that 1% demand shift induces a 40 bps CAR between

the announcement and the effective day, columns (5) and (6) show that this abnormal

return is almost entirely realized on the effective day and the day before it. This finding

is also confirmed in the last column, indicating that the abnormal returns two days before

the effective day are insensitive to index funds’ rebalancing demand.

The findings mentioned above reassure us about the conjecture that better prices

do not incentivize index funds to rebalance their portfolio sooner than the day before

the effective day, simply because they are bounded by and compensated for their low

tracking error. In fact, no index fund is expected to produce positive investment α, and

if it does, it will not be perceived as a positive sign by investors since they expect the index

funds to only mirror the index portfolio with close to zero tracking error. Consequently,

index funds have no incentive to take the risk of higher tracking error for price gains,

and ultimately they are not compensated for such αs. On the contrary, conditional on

willingness to follow index guidelines, active investors not bounded by any tracking error

will rebalance their portfolios at the announcement since they know they will likely face

better prices both for selling deletions and buying additions.

To properly interpret the coefficients, it is crucial to consider the causal implications

of the results. MRF is determined based on the values from the day before the effective

day, which accurately reflects the actual weight changes before and after index recon-

stitutions that require rebalancing. However, MRF reveals the magnitude and direction

of rebalancing, both foreseeable at the announcement. For instance, if the stock to be

added is larger than the stock to be deleted (after float adjustment), MRF will be nega-

tive and almost uniform for all incumbents in that particular reconstitution. Note that

the majority of the variation in MRF stems from the last ratio in equation (4), which is

Divisort/Divisort+1. This ratio channels the effect of the discrepancy in the weight of

the added and deleted firms into the weights of other index incumbents. Therefore, the

market can accurately predict the sign of the effect by comparing the firms’ sizes, and the

magnitude can be easily estimated using the float-adjusted market value of index incum-

bents and the deleted stock over the float-adjusted market value of index incumbents and

the added stock. Under this high-precision predictability of MRF, regressions with de-

pendent variables that are more than one day before the effective day retain their causal

interpretation. In this sense, my findings also contribute to the literature on predictable

price pressure, such as Hartzmark and Solomon (2022).

As I will show later in Section 4.2, the price reactions to index additions and deletions

have been falling through the years, despite the sharp increase in passive investing that

was particularly documented for S&P 500 in Figure 1. The diminishing magnitude of

the index effect had been reported in other recent studies, for instance, Bennett et al.
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Figure 3: Price impact across time

This figure shows the estimates of price impact across time. Price impact is estimated as the βt coefficient
in the following regression CAR∗jt = βtMRF j

t + φXjt + θt + θj + εjt, where βt =
∑

p βp1(period = p)
in which the sum goes through division of sample time into two-year periods (2000-01, 2021-06)-eleven
periods in total, the last period is one and half years. 95% condence intervals are shown in light shadow
around the means.

(2021); Greenwood and Sammon (2022); Patel and Welch (2017) among others. Higher

market efficiency fares as the most reasonable explanation for this stark and somewhat

surprising observation, but it is not easy to test this hypothesis using the data of index

additions and deletions themselves. This is because one can not disentangle easily between

decreasing price impact related to the demand-driven component of the index effect or

less informative recent index decisions associated with the non-demand-driven part of it.

Furthermore, the recent increase in switching between S&P500 stocks and their smaller

counterparts, S&P 400 mid-cap and S&P 600 small-cap indices, makes identifying the

possible scenarios even harder. The main contribution of this paper is to solve this

problem by the novel identification that changes the focus from an information-intensive

demand shift on additions and deletions to an information-free demand shift on index

incumbents.

To test the hypothesis of flattening demand curves for stocks, I halve the sample

of index incumbents into late and early, each containing eleven years of data, and run

the same regressions on the two sub-samples. In the earlier sub-sample, all regression

results are more substantial, both in size and statistical significance. In the late most

coefficients lose their significance and shrink in magnitude. This fact shows that the early
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part of the sample mostly drove the result in the full sample. Despite the large standard

errors in the late sample, the differences in the coefficient estimates between early and

late sub-samples are statistically significant in most regressions, which is direct evidence

of flattening demand curves beyond index decisions and their informational content. In

the shadow of these findings, the shrinking magnitude of the index effect is no more

surprising.

I use the dynamic regression setting in Equation (8) with a time-varying coefficient to

study the time trend of the price reaction sensitivity to index funds’ demand shifts. I use

the CAREff
Ann as the measure of price reaction to index decision to ensure that the outcome

variable includes both the anticipated and unanticipated part of the price reaction. This

choice is also motivated by the fact that this regression’s result will be used in the next

section to make predictions for the index effect on additions and deletions, and such a

choice of time window ensures an apple-to-apple comparison between the figures.

Figure 3 displays the index funds’ price impact estimates using the time-varying

model. The graph indicates that the average price impact of index funds’ demand has de-

creased over the last two decades. The sensitivity of prices to demand shifts has dropped

from approximately 1.5 in the early part of the sample to nearly zero in the late part.

This direct evidence of overall enhancement in market efficiency shows that the market

participants, including arbitrageurs and market makers, have greatly improved in provid-

ing liquidity to index funds. Moreover, the figure shows that the aggregate price impact

is greatly tied to the overall capability of the market in providing liquidity to demand

shiftsFor instance, during times of financial crises and the COVID-19 pandemic, when

the market was constrained, the price impact multiplier shoots up.

4.1.2 Arbitrage Risk

This section provides a channel to explain the price impact reduction using the arbitrage

risk measure introduced in Wurgler and Zhuravskaya (2002). They show that the degree

of substitutability of stocks by their close substitutes can explain the cross-section of

abnormal returns that those stocks experience in response to demand shifts. I extend

their study to see how arbitrage risk has evolved and whether it contributes to explaining

the marketwide reduction in price impact.

Wurgler and Zhuravskaya (2002) use a measure for arbitrage risk that is the residual of

regressing the excess returns of one stock on the excess returns of its substitutes over the

calendar day [-365, -20]. I use their first measure (A1) that incorporates the overall market

as the substitute for all stocks. They show that alternative measures of arbitrage risk are

highly correlated with this one, and in some cases, they are slightly less informative.
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Table 3: MRF and Arbitrage Risk

(1) (2) (3) (4) (5) (6) (7) (8)

CAREff
Ann CAREff

Ann CAREff
Ann CAREff

Ann CAREff
Ann CAREff

Ann CAREff
Ann CAREff

Ann

MRF 0.420∗∗ 0.427∗∗ 0.037 0.146
(2.37) (2.38) (0.28) (1.06)

AN
1 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(3.02) (3.25) (3.26) (3.01) (3.02) (3.02)

MRF × AN
1 0.525∗∗∗ 0.548∗∗∗

(5.88) (5.05)

MRF × AN
1 × Late -0.543∗∗

(-2.05)

Shockbil 0.008∗∗ 0.008∗∗ -0.000 0.003
(2.14) (2.15) (-0.05) (0.47)

Shockbil × AN
1 0.021 0.023

(1.04) (1.04)

Shockbil × AN
1 × Late -0.020

(-1.22)
Controls Y Y Y Y Y Y Y Y
FE D & S D & S D & S D & S D & S D & S D & S D & S
N 221604 221604 221604 221604 221604 221604 221604 221604
Adj. R-sq 0.019 0.019 0.020 0.020 0.019 0.019 0.019 0.019

This table reports the results of estimating panel regression in Equation (7) on index incumbents. The
dependent variable in all regressions is the cumulative abnormal returns of index incumbents from the
announcement day to the effective day of index reconstitutions. The independent variables include MRF
(demand shock in percentage) and Shockbil (demand shock in USD billions). A1 is the arbitrage risk
according to Wurgler and Zhuravskaya (2002). Late is a dummy for the second half of the sample
period. Control variables are logMV (the logarithm of total market value), IWF (proprietary float
factor), βCAPM (loading on the market in the one-factor market model). The sample period is (2000-01,
2021-06). T-statistics based on standard errors double-clustered by stock and day are in parentheses.
Significance levels are marked as: ∗p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.
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Figure 4: Arbitrage risk across time

This figure shows the evolution of stocks’ arbitrage risk through time. Arbitrage risk (A1) is measured
according to Wurgler and Zhuravskaya (2002). The red line shows the median of index incumbents’
arbitrage risk in each year, and the blue lines show the 25th and 75th percentiles. The sample period is
(2000-01, 2021-06).

Table 3 explains the relation between arbitrage risk and price impact. The outcome

variable is the total abnormal return of index incumbents between the announcement and

the effective day of index changes, inclusive of both dates. Regression (1) is the baseline

regression taken from Table 2 brought here for comparison. Regression (1) and (2) show

that demand shock size and arbitrage risk are positively and significantly related to event

returns. Regression (3) confirms that arbitrage risk is the channel through which demand

shocks impact prices; Once I control for the interaction of MRF and arbitrage risk, the

coefficient of MRF is no longer significantly different from zero. In other words, if a stock

has perfect substitutes (hence, zero arbitrage risk), demand shifts will not impact its price.

Regression (4) shows that the association mentioned above still exists in the late part of

the sample but to a lesser extent. Specifications (5)-(8) replace the MRF (that is, demand

shock in fraction) with the demand shock in currency amount (USD billions). Overall,

these specifications show that although both demand shocks in fraction (of total market

cap) and demand shocks in dollar amounts contribute to explaining realized abnormal

returns, the demand shock in percentage captures the variations in a sharper manner.

While table 3 shows how arbitrage risk acts as a channel between demand shocks and

their price impact, Figure 4 complements the picture by demonstrating how this measure
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has evolved through time. This figure shows that arbitrage risk took a declining trend

from 2000 onwards and stabilized at its minimum level for four years before the 2008

financial crisis. The spike of arbitrage risk after the 2008 financial crisis subsided in 2011,

and it returned to its minimum level and remained around that level in all the years

before the COVID-19 pandemic in 2020. Overall, this figure shows three points: First,

arbitrage risk crucially depends on the stability of financial markets. Second, the overall

reduction in arbitrage risk, besides the results in Table 3, shows that the reduction in

price impact is partially due to improvement in the overall substitutability of stocks for

one another. In other words, stocks generally have much closer substitutes in the late

part of the sample than in the earlier part, and this reduces the price impact associated

with demand shifts. Third, the parallel trend of arbitrage risk and price impact multiplier

in Figure 3, including the spikes in 2008 and 2020, reassures that arbitrate risk is channel

between demand shift and price changes, and the documented reduction in price impact

is indeed due to reduction in arbitrage risk and not just a time trend.

4.1.3 Elasticity of Demand

The price elasticity of index funds’ demand can be directly calculated as −1/β, in which β

comes from the price impact estimates in the previous section. With flat or perfectly elas-

tic demand curves, the price elasticity is −∞, and with downward-sloping or imperfectly

elastic demand, the price elasticity approaches zero.

Despite the crucial importance of this parameter in asset pricing models, the litera-

ture offers a very broad range of its estimates. Wurgler and Zhuravskaya (2002) list a

comprehensive review of extant price elasticity estimates, most of which revolve around

−5 to −10. For instance, the price elasticity estimate from a cleanly identified study of

Kaul et al. (2000) is −10 on a sample of stocks in the Toronto Stock Exchange when

the definition of the TSE 300 index for the floating percentage of firms changed. In a

recent study, Gabaix and Koijen (2022) lists the most recent estimates of price elasticity

of demand. The estimates using individual stocks characteristic like the present paper, as

opposed to those using factor level or macro estimates, range between -0.4 to -3.3. While

some of these papers use index redefinition such as Pavlova and Sikorskaya (2022) and

Chang et al. (2014), there are papers leveraging other demand shifts such as dividend

payouts as in Schmickler (2020) and Hartzmark and Solomon (2022), and mutual fund

flows in Lou (2012).

The identification of elasticity in the extant literature raises three concerns which

are addressed in this paper. Firstly, the inherent problem of estimating the slope of

the demand curve, and hence the elasticity of demand for stocks, is that in almost all
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events that provoke a sizable demand shift, such as index inclusions and exclusions,

information can have a role in price reactions. Therefore, the price response in most

of the proposed settings combines informational and demand components. Since this

information is intrinsically endogenous to the provoked demand and consequently to

prices, the elasticity estimates in these studies can be highly confounded. This criticism

is mainly leveled at the studies claiming downward-sloping demand curves solely based

on the price reactions upon S&P inclusion and exclusions such as Shleifer (1986).

The second concern in estimating elasticity using event studies, such as those on index

inclusions and exclusion, is that they only measure the average price impact in response

to the average demand. For example, Chang et al. (2014) reaches a price impact of

5% in response to an average demand shift of about 7.3% and concludes with a price

elasticity of -1.46. This calculation is correct only if we believe in a homogeneous price

impact for stocks. However, many other important factors, such as size, the floating

fraction of stock, and the effective supply of shares, may plausibly affect the elasticities.

So the average elasticity for stocks may not equate to the negative of average demand

over average return. In contrast, in this paper, I directly estimate the individual price

impact for infinitesimal individual demand surprises for stocks controlling for individual

firm characteristics to lift this issue in estimation.

The last concern in estimating the price elasticity of demand is best described in

Pavlova and Sikorskaya (2022). They show that it is essential to control the effective

supply of the stocks in estimating the elasticity of demand. Otherwise, the estimates

show the demand curve steeper than it is. This concern is particularly relevant in the

studies that estimate the price reaction in response to significant demand shifts, such as

index inclusion and exclusion. Although very crucial, this concern is not relevant for the

setting of this paper since I am using tiny surprises in the weight of index incumbents

and not added and deleted firms themselves. Such minor rebalancings do not move the

effective supply of the stocks.

Focusing on the daily returns, on the effective days, in the first column of Table 2,

the implied price elasticity of demand is -2 for the early sample and -4.2 for the entire

sample. Since the price reaction on an effective day does not include the surprise of

index decisions on the announcement, it is instructive to see the price elasticity implied

by the price reaction for the entire period of announcement to implementation using the

CAREff
Ann in column (4). Focusing on this measure of price changes also has the advantage

of abstracting from market movements in finding the average implied price elasticity.

Variations in total cumulative abnormal return between the announcement and effective

day of index decisions imply a price elasticity of nearly -1 in the early sample and -2.5

in the full sample. These estimates align with the results implied by the time-varying
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model.

The estimates of elasticity in this section could be called into question if index funds,

which incur transaction costs for their trades, do not rebalance their portfolio in response

to changes in index composition. Similarly, the possibility that some active funds may

trade based on index guidelines biasing the estimates upward can also be a concern.

While these are legitimate identification concerns, they should not be overemphasized

for two reasons. First, Pavlova and Sikorskaya (2022) have shown that passive funds

benchmarked to S&P 500 have almost zero tracking error (0.2-0.4 % per annum) in their

entire sample period and have held, on average, 99.6% of their benchmark stocks. This

evidence suggests that at least passive funds benchmarked to S&P 500 do exactly as they

are expected: They mirror the index portfolio with no discretion.

Second, although some active funds may trade based on index inclusion or exclusion

decisions, it is unlikely that they would rebalance other stocks in that benchmark accord-

ing to updated weights. Moreover, since they don’t hold the entire index portfolio, their

rebalancing would not be correlated with that of index funds. Lastly, academic literature

on the index effect suggests that active funds would trade on the announcement, as they

know they can get better prices at that time compared to the effective day. Therefore,

even if active funds rebalance their portfolio based on index decisions, they are unlikely

to do it in a way that affects the regression results in Table 2. These results show that

the effect is concentrated on the effective day and the day before, indicating that they

are related to index funds’ demand that trade according to the index schedule.

4.1.4 Demand and Liquidity

The weight surprises experienced by index incumbents due to the difference in the weight

of added and deleted firms during reconstitutions are indeed relatively small. An example

provided in Section A.1 in the Appendix clarifies this point. If the weight of the added

firm(s) is 1% more than the weight of the deleted firm(s), all index incumbents will

experience a weight reduction of approximately 1% after the event. Considering that

the average firm has an index weight of around 0.2%, even in this extreme example, the

surprise in the weight of index incumbents would be on the order of 0.002%.

It is important to note that although these surprises may seem diminutive in face

value, they can have a significant impact when multiplied by the total assets under the

management of index funds. As of 2022, the total assets under the management of index

funds are estimated to be around USD 5.4 trillion16.

This section shows that despite the weight surprises being small in face values, they

16Index fact sheet, available on https://www.spglobal.com/spdji/en/indices/equity/sp-500/
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Table 4: MRF and turnover

(1) (2) (3) (4) (5) (6) (7) (8)
TOt TOt TOt TOt TOt−1 TOt−1 TOt−1 TOt−1

abs(MRF ) 0.357∗∗∗ 0.201∗∗∗ 0.199∗∗∗ 0.076∗ 0.973∗∗∗ 0.802∗∗∗ 0.799∗∗∗ 0.123∗∗

(4.98) (3.92) (3.90) (1.71) (7.01) (6.81) (6.78) (2.19)

AvgTOM 0.737∗∗∗ 0.737∗∗∗ 0.736∗∗∗ 0.809∗∗∗ 0.809∗∗∗ 0.807∗∗∗

(25.76) (25.75) (25.59) (26.03) (26.02) (25.91)

MRF > 0 0.000 0.000 0.000 0.000
(1.22) (1.07) (0.62) (0.41)

Q− AvgTOM=1 × abs(MRF ) 0.000 0.000
(.) (.)

Q− AvgTOM=2 × abs(MRF ) -0.025 0.048
(-0.55) (0.64)

Q− AvgTOM=3 × abs(MRF ) 0.072 0.570∗∗∗

(0.85) (4.50)

Q− AvgTOM=4 × abs(MRF ) 0.265∗∗ 1.244∗∗∗

(2.42) (5.85)
Controls Y Y Y Y Y Y Y Y
FE D & S D & S D & S D & S D & S D & S D & S D & S
N 221624 221624 221624 221624 221624 221624 221624 221624
Adj. R-sq 0.440 0.626 0.626 0.626 0.442 0.656 0.656 0.658

This table reports the results of estimating panel regression in Equation (7) for index incumbents when
the dependent variable is daily turnover. The sample includes all incumbent observations in the recon-
stitution days in the sample period (2000-01, 2021-06). The independent variable is the absolute value of
MRF i

t , the surprise dollar amount of money flowed into stock i at the reconstitution day t (proportional
to the previous day’s market value) only because of the mechanical change in its weight after the close of
the previous trading day. Control variables include logMV (the logarithm of proprietary total market
value), IWF (proprietary float factor), and βCAPM (loading on the market in the one-factor market
model). T-statistics based on standard errors double-clustered by stock and day are in parentheses.
Significance levels are marked as: ∗p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.
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invoke a considerable demand shift on the index incumbents. I use stock turnover, defined

as the following equation T j
t = voljt/S

j
t , in which voljt is the daily volume of trades and

Sj
t is the number of shares outstanding of stock j in day t, as the dependent variable

of the panel regression in Equation (7), and the absolute value of the MRF measure as

the independent variable since the direction of index fund activities (buy or sell) has no

bearing on the volume of trades. I verify this by adding a dummy of the MRF sign to

the regressions.

Estimation results are reported in Table 4. The coefficient estimates of abs(MRF )

are around 0.3 and 0.9, respectively, on the effective date and the day before it, and

are highly significant. Interestingly, the coefficient change is marginal even when the

average of the dependent variable in the previous month is added to the explanatory

variables. Regarding economic significance, given the standard deviation of MRF is

about 0.083%, one standard deviation increase in MRF results in a 0.1% increase in the

stock turnover that is 10% of this variable’s sample standard deviation. Regressions (3)

and (7) reassure that the direction of index funds’ activity (buy or sell) does not have

a bearing on the amount of increase in stock turnover, and the effect is symmetric for

positive and negative MRF. Regressions (4) and (8) show that the average increase in

turnover due to the index funds’ rebalancing is mostly concentrated on the most liquid

stocks. In untabulated results, I verified that fixed effects and controls only marginally

contribute to the findings, especially when I control for the stocks’ unconditional liquidity

by their average turnover in the preceding month (AvgTOm).

4.1.5 Demand and Volatility

This section the relation between non-fundamental demand shifts and stocks’ volatility.

For the measure of daily volatility, I use stocks’ normalized price range as defined as the

following equation

Rangejt =
PHigh
jt − PLow

jt

P close
j,t−1

, (9)

that is the difference between high and low prices normalized by the previous day’s closing

price.

Estimation results are reported in Table 5. The coefficient estimates of abs(MRF )

are around 0.4 regardless of the controls and fixed effects. The coefficient only marginally

changes when the average of the dependent variable in the previous month is added to the

regressors. Regarding economic significance, given the standard deviations of MRF and

Range are about 0.083% and 2.4% respectively, one standard deviation increase in MRF

results in an increase in the daily stock turnover that is 1.3% of this variable’s sample
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Table 5: MRF and volatility

(1) (2) (3) (4) (5) (6) (7) (8)
Ranget Ranget Ranget Ranget Ranget Ranget Ranget Ranget

abs(MRF ) 0.436∗∗∗ 0.359∗∗∗ 0.346∗∗∗ 0.294∗∗∗ 0.405∗∗∗ 0.364∗∗∗ 0.375∗∗∗ 0.229∗∗∗

(5.28) (5.45) (5.26) (5.90) (3.51) (4.19) (4.27) (3.26)

AvgRangeM 0.755∗∗∗ 0.755∗∗∗ 0.754∗∗∗ 0.850∗∗∗ 0.850∗∗∗ 0.849∗∗∗

(29.80) (29.80) (29.75) (27.82) (27.88) (27.80)

MRF > 0 0.001∗∗ 0.001∗∗ -0.001 -0.001
(2.53) (2.43) (-0.85) (-0.86)

Q− AvgRangeM=1 × abs(MRF ) 0.000 0.000
(.) (.)

Q− AvgRangeM=2 × abs(MRF ) -0.040 0.035
(-0.47) (0.37)

Q− AvgRangeM=3 × abs(MRF ) 0.006 0.092
(0.05) (0.55)

Q− AvgRangeM=4 × abs(MRF ) 0.400 0.652∗

(1.32) (1.83)
Controls Y Y Y Y N N N N
FE D & S D & S D & S D & S Y Y Y Y
N 221624 221624 221624 221624 221624 221624 221624 221624
Adj. R-sq 0.597 0.677 0.677 0.677 0.260 0.585 0.585 0.585

This table reports the results of estimating panel regression in Equation (7) for index incumbents when
the dependent variable is daily volatility, measured as the daily price range (high - low) over the previous
day’s closing price. The sample includes all incumbent observations in the reconstitution days in the
sample period (2000-01, 2021-06). The independent variable is the absolute value of MRF i

t , the surprise
dollar amount of money flowed into stock i at the reconstitution day t (proportional to the previous day’s
market value) as a result of the mechanical rebalancing of index funds. Control variables include logMV
(the logarithm of proprietary total market value), IWF (proprietary float factor), and βCAPM (loading
on the market in the one-factor market model). T-statistics based on standard errors double-clustered by
stock and day are in parentheses. Significance levels are marked as: ∗p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.

standard deviation. Regressions (3) and (7) indicate that the direction of index funds’

activity (buy or sell) has little bearing on the amount of increase in stock volatility, as

the effect is almost symmetric for positive and negative MRF. Regressions (4) and (8)

show that the average increase in volatility due to the index funds’ rebalancing is mostly

concentrated on the most volatile stocks.

There has been a vibrant literature on excess volatility puzzle following the outstand-

ing work of Shiller (1981). The excess volatility puzzle is related to the fundamental

observation in financial markets that the volatility of asset prices exceeds what can be

explained by changes in the underlying fundamentals. Put differently, it refers to the fact

that stock prices tend to fluctuate much more than can be justified by changes in the

expected dividends or earnings of the firms. Basak and Pavlova (2013) use a theoreti-

cal framework to show that index funds can amplify the volatility of the stocks in their
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benchmark index and aggregate stock market volatility.

Among the empirical works, Ben-David et al. (2018) show that ETFs, which are

primarily passive index trackers, increase the volatility of the stocks in their portfo-

lio through a liquidity channel. They show that liquidity shocks can propagate to the

underlying securities through the arbitrage channel, and ETFs may increase the nonfun-

damental volatility of the securities in their baskets. The findings in this section further

support the idea that demand shifts that are unrelated to the fundamentals can increase

stock price volatility. However, unlike the liquidity channel documented in Ben-David

et al. (2018), the increase in volatility here is driven by the direct trades of indexers in

an imperfectly efficient market rather than through the arbitrage activity between ETF

prices and the underlying baskets’ price.

4.2 Index Additions and Deletions

This section studies the short-term price reactions to S&P 500 index reconstitutions. The

first part of the section reports the abnormal return of added and deleted firms around

the index reconstitution in an event study manner. The second part examines whether

index funds’ demand can justify the observed effect size by incorporating the estimates

of price impact from Section 4.1.

Figures 5 and 6 show the abnormal returns experienced by the added and deleted firms

around the event, respectively, in the short and long time windows. The announcement

day for each index reconstitution varies in the sample between 1 to 30 trading days

before the effective day, with a high mass around the median of 5 trading days17 which

is one calendar week. Therefore, for the long window in Figure 6, I started calculating

cumulative abnormal returns from 30 trading days before the effective day of events to

ensure announcements happen within the window. Abnormal returns are also summarized

numerically in Table 6. All abnormal returns are calculated using coefficients from a four-

factor Carhart (1997) model incorporating a moving window of 252 days, conditional on

having 100 observations. To avoid contamination of pre-event dates into coefficients, I

use coefficients from two weeks (10 trading days) before the effective dates.

For additions, the cumulative abnormal return in the period of Ann− 30 to Ann− 10

is 1.7% and is significant. The same is true for the period Ann− 9 to Ann− 2. Between

the three dates of announcement day and the days before and after it, only announce-

ment day has a significant return that averages to a whooping amount of 2.3%. The

period between announcement day and effective day, including both dates, has an av-

erage abnormal return of 2.2%. This is the main figure we know as index effect and is

17In 60% of events, this distance is between 4 to 6 trading days.
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Figure 5: Abnormal returns of index additions and deletions, short CARs

This figure presents the event study results for the abnormal and cumulative abnormal returns of S&P
500 additions and deletions. The sample period is (2000-01, 2021-06). The left figures show the CARs
around the announcement day, and the right figures show that around the effective day. Vertical axes
report outcomes on percentage return. 95% condence intervals are shown in light shadow around the
means.

marked as CAR∗ in Table 6. I verify in untabulated results that CAR∗s for additions are

not statistically different from the abnormal returns experienced just on the announce-

ment date, so most of the price effects are centered on the announcement. This is also

clear when looking at the abnormal returns on the three dates of the effective day, the

day before, and after it, which are all small and insignificant for a 95% confidence level.

Lastly, the cumulative abnormal returns after the event for all time windows are small

and insignificant, which is also confirmed by Figure 6, which shows that the experienced

abnormal returns by additions do not revert.

In the analysis, I separate forced and discretionary deletion to emphasize that the

forced deletions are in the shadow of more important events than their deletions from the

index, which is the reason for their delisting. These abnormal returns are stagnant until

a few days before the effective day, but the swings are large in magnitude. So I abstain

from commenting on their returns and focus on the discretionary deletions that continue

trading after the deletions.

About discretionary deletions, the average CAR in the periods ofAnn− 30 toAnn− 10

and Ann− 9 to Ann− 2 are both very large and significant summing to about -8.2% al-

though index announcement had not yet happened. This finding shows that the index
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Figure 6: Abnormal returns of index additions and deletions, long CARs

This figure presents the event study results for the abnormal and cumulative abnormal returns of S&P
500 additions and deletions. The sample period is (2000-01, 2021-06). Horizontal axes show the distance
of the dates from the effective day in trading days. Vertical axes report outcomes based on percentage
return. The event window begins 30 trading days before the effective day and ends 45 days after. 95%
condence intervals are shown in light shadow around the means.

effect is at best responsible for one-third of the trough we observe on Figure 6 on the

effective day. These huge negative abnormal returns on discretionary deletions before

the announcement are followed by another negative shock on the announcement day for

an amount of -2.2%. CAR∗ for deletions averages about -2.9%. Similar to additions,

the CAR∗ for these stocks is not statistically different from the abnormal return just on

the announcement. The last trading day before the deletions has a substantial negative

average AR of about -1.7% followed by a positive abnormal return on the effective day

of about 0.8%.

Deleted stocks experience an upward rally in price after the effective date and exhibit

a CAR of about 7% from one day after the effective day up to two months after it

(measured as 45 working days). This impressive comeback after the deletions make the

average CAR of deletions at the end of the event window statistically indistinguishable

from zero at a 95% confidence level. Therefore, unlike additions, the index effect for

deletions does not seem permanent.

Two stylized facts observed collectively in Table 6, Figure 5, and Figure 7 are worth

mentioning here. First, the CAR∗ is substantially smaller in magnitude than the peak

CAR in Figure 5 for both additions and discretionary deletions. It means that a sig-
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Table 6: Abnormal returns of S&P 500 additions and deletions

Time/Window
Additions Discretionary Deletions Forced Deletions

mean pos (%) N mean pos (%) N mean pos (%) N

CARAnn−10
Ann−30 1.66∗∗∗ 55.63 453 -4.47∗∗∗ 41.49 241 0.68 60.0 270

3.57 -4.01 1.06
CARAnn−2

Ann−9 1.12∗∗∗ 57.76 464 -3.73∗∗∗ 36.78 242 0.04 56.47 278
3.93 -5.31 0.11

ARAnn−1 0.07 50.43 464 -0.48 46.69 242 0.14 53.56 267
0.63 -1.54 0.84

ARAnn 2.33∗∗∗ 74.35 464 -2.21∗∗∗ 34.17 240 0.04 49.79 241
13.85 -6.63 0.28

ARAnn+1 -0.09 46.12 464 -0.42 45.0 240 -0.04 50.23 215
-0.89 -1.47 -0.26

CAR∗ = CAREff
Ann 2.18∗∗∗ 56.06 528 -2.89∗∗∗ 41.56 243 -0.47∗ 37.77 278

8.2 -4.88 -1.92
AREff−1 0.23 53.88 464 -1.67∗∗∗ 32.37 241 -0.73∗∗∗ 36.32 212

1.41 -5.76 -3.57
AREff -0.19∗ 47.63 464 0.8∗∗ 55.83 240 -1.76 47.83 23

-1.82 2.59 -1.7
AREff+1 -0.07 50.65 464 0.82∗∗∗ 55.83 240 -0.97 41.67 12

-0.66 2.71 -0.82

CAREff+5
Eff+2 -0.35∗ 49.24 463 0.34 50.0 238 - - 0

-1.8 0.59

CAREff+10
Eff+6 -0.19 46.77 464 0.84 52.34 235 - - 0

-0.82 1.19

CAREff+20
Eff+11 -0.43 50.97 465 1.55∗∗ 51.08 231 - - 0

-1.48 2.03

The table presents the event study results for the abnormal and cumulative abnormal returns of S&P
500 additions and deletions. The first column indicates the related window or date. For windows of more
than one day, mean cumulative returns are reported in columns (2) and (5), and for other rows that are
single dates, the mean abnormal return is shown in those columns. T-statistics for testing whether the
mean of the corresponding AR or CAR is statistically different from zero are reported in parentheses.
Columns (3) and (6) indicate the percentage of observations with positive abnormal returns. Columns (4)
and (7) are the number of observations. Eff and Ann are effective and announcement days, respectively.
Significance levels are marked as: ∗p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.

nificant portion of abnormal returns in peak CARs have been realized before the index

announcements, making it implausible to assume that there is information revealed upon

the index announcement. If anything, it makes more sense to think index decisions were

motivated by these frequent price drifts.

Second, I depict the average CAR∗s in different years for additions and discretionary

deletions in Figure 7. This figure highlights the seemingly surprising phenomenon that

the magnitude of the index effect is decreasing over time despite the sharp increase in the

demand of index followers, already documented in Figure 1. This shrinking trend is also

noted in Patel and Welch (2017), Bennett et al. (2021), and Greenwood and Sammon
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Figure 7: CAR∗ of S&P 500 additions and deletions by year

The figure shows the CAR∗ of S&P 500 additions (green line) and deletions (red line) by year. The
sample period is (2000-01, 2021-06). The horizontal axis shows the corresponding year, and the vertical
axis is the average percentage return. The 95% condence intervals are shown in light shadow around the
means.

(2022). However, the previous section showed that the price impact multiplier had a

decreasing trend over the last decade, independent and beyond index decisions, which

can partially explain the shrinking magnitude of the index effect if it happened faster

than the increase in passive investing. Given these stylized facts, the rest of this section

formally shows that a demand model can adequately replicate the magnitude of the index

effect and its decreasing trend.

To provide a benchmark for appropriate price reaction to demand shifts in the absence

of information, I use the price impact regressions in Section 4.1 to find the predicted

price reaction of index additions and deletions if those events were truly information

free and examine if such predictions are in the same magnitude of actual figures. For

the model with a time-invariant coefficient estimate, I produce a predicted return (R̂eti)

for each added or deleted stock based on its MRF and the estimates of coefficients in

regression (4) of Table 2 whose outcome variable is CAR∗. Regression (4) is chosen since

it measures the price reaction precisely on the same time interval for index incumbent

that we measure CAR∗ on for additions and deletions. I produce the predicted value

based on the model with a time-varying coefficient in a similar manner. Crucially, in

both models, I incorporate the same controls and fix effects in making the predicted
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Table 7: Sample comparison of actual and predicted abnormal returns

Sample
Training
Model

CAR∗
jt = βMRF j

t

+φXjt + θt + θj + εjt

CAR∗
jt = βtMRF j

t

+φXjt + θt + θj + εjt
Actual Predicted Difference Predicted Difference

Additions 2.18∗∗∗ 1.77∗∗∗ 0.41 2.35∗∗∗ -0.17
Discretionary Deletions -2.89∗∗∗ -1.75∗∗∗ -1.14∗ -2.32∗∗∗ -0.57

This table compares the sample means of predicted and actual abnormal returns for additions and
discretionary deletions. The model based on which the predictions are made is reported on the top
row. Each model is trained on the sample of index incumbents and used on the sample of additions and
deletions to make the predicted values. The sample period is (2000-01, 2021-06). Significance levels are
marked as: ∗p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.

values that were used in the reference estimation. Results of this prediction exercise are

presented in Table 7 and Figure 8.

Table 7 indicates that the sample mean of predicted CAR∗s for additions and discre-

tionary deletions and the actual CAR∗s are of a similar order of magnitude. The sample

means are statistically indistinguishable at the 95% confidence level for both additions

and discretionary deletions in both models. This finding suggests that the demand com-

ponent is sufficient to explain the magnitude of the abnormal returns observed on S&P

500 additions and deletions. Significantly, these findings do not entirely discount the

existence of informational components, such as information, awareness, liquidity, and at-

tention, which may have some impact on the involved stock. Instead, they indicate that

if these components do exist, their outcomes must cancel out and leave a negligible net

marginal impact on the average magnitude of abnormal returns. This is not farfetched,

given the mixed evidence of these components on the stocks. For example, while the

effect of improved awareness of market participants is perceived positively for additions

in Chen et al. (2004), Bennett et al. (2021) show that the greater scrutiny as a result of

heightened attention after the addition of stocks to the S&P 500 has some adverse effects

on the firms’ performance.

Figure 8 displays a scatter plot of the predicted and actual CAR∗s based on the

two models. Each point on the graph represents a stock, with its actual CAR∗ on the

vertical axis and its predicted value on the horizontal axis. The figure also details the

simple line that passes through the points from a univariate OLS regression. In both

cases, the intercept is close to zero, which is expected given that Table 7 revealed that

the predicted values perfectly capture the sample means. The slope of the lines in both

models is close to one and statistically indistinguishable from it in the model with time-

invariant coefficients.

Additionally, the figure reports the R2 of the underlying regressions, which are out-

of-sample R2s by definition since the added and deleted stocks were not included in
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Figure 8: Actual and predicted values of CAR∗ for S&P 500 additions and deletions

The figure shows the actual cumulative abnormal return of S&P 500 additions and deletions between
announcement and effective day (CAR∗) on the vertical axis, and the predicted values of these amount
on the horizontal axis. Blue dots represent additions and red dot represent discretionary deletions. In
the left figure predicted values are made using a static (time-invariant) model, while in the right figure a
dynamic model with time varying sensitivity is used. The orange line shows the OLS regression of actual
CAR∗s on the predicted ones. The sample period is (2000-01, 2021-06).

the sample of the training model that was estimated on the index incumbents. The

R2 of the model with time-varying coefficients is slightly higher, as this model more

effectively captures the variation in price reactions due to changes in aggregate market

conditions. The predictions of the time-varying model have a wider range in which both

added and deleted stocks exhibit negative and positive returns, just as in the actual

returns. Furthermore, in unreported results, I verified that the dynamic model also

captures the decreasing trend of the index effect in the sense that the overall magnitude

of the predictions decreases over time.

4.3 Long-term Analysis

4.3.1 Long-term Returns

This section investigates the returns of S&P additions and deletions in longer horizons.

The purpose is to determine whether adding a company to the index is a form of reward for
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Figure 9: Calendar-time portfolio returns over time

The figure shows the annual returns of the calendar-time portfolios constructed by recently added (green)
and recently deleted (red) stocks. The annual return of the S&P 500 total return index (blue) is added
as a benchmark. The holding period of the stocks in the portfolios after the event is mentioned above
the figures. The sample period is (2000-01, 2021-06).
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its past exemplary performance or a reflection of its future potential for success. Similarly,

it aims to discern whether removal from the index is a penalty for substandard past

performance or a result of inferior prospects. The findings indicate that S&P inclusion

and exclusion decisions are more closely linked to a company’s past performance and

stock returns, thereby doubting the hypothesis that these decisions are based on insider

information or superior analytical power. I consider only discretionary deletions in this

section since forced deletions don’t exist after the event.

To examine long-term returns, I employed calendar-time portfolios due to their ability

to account for cross-sectional correlation among constituent stocks within the portfolio,

as opposed to CARs. In addition, these portfolios offer a practical investment strategy.

I created two groups of equal-weighted portfolios based on recently added and deleted

stocks using the following approach: for each holding period of N days, the corresponding

portfolios are comprised of stocks added to or removed from the index during the pre-

ceding N days. I repeated this strategy for multiple holding periods to identify trends.

These portfolios were constructed at the outset of the sample period and rebalanced daily

until the end of it. Dividends were reinvested in the corresponding stocks. If a portfolio

was empty in a day, its value was kept still until the next time a stock was added to it.

Figure 9 shows each year’s annual return of constructed portfolios. S&P 500 total

return index is also added to the figures for better comparison. While there are many

variations between the added and the deleted portfolios for short holding periods, there

is virtually no difference between their returns in longer horizons. Furthermore, in most

of the years, the direction of their returns agrees with that of the index.

Table 8 presents a comparison of portfolio returns in a different manner. First, long-

horizon portfolios that held assets in them for over a year generated a larger average

return than the index. However, their sharp ratios were much lower than that of the

index. Second, none of the portfolios, including the index, produced a positive alpha.

In particular, both portfolios yielded a negative and significant alpha for short holding

periods. These findings pose evidence against the information hypothesis. Third, Chan

et al. (2013) found positive and significant alphas on similar equal-weighted calendar-time

portfolios using a sample that predates the one used in this study. Therefore, it appears

that even if S&P 500 changes were informative in the past, they are no longer so.

4.3.2 Fundamental Analysis

In this section, I analyze the fundamental characteristics of the stocks added and deleted

from the S&P 500 index using an event-study approach. The study uses financial ratios

to ensure comparability, with quarter zero representing the last fiscal quarter for which
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Table 8: Calendar-time portfolio return characteristics

Portfolio
Holding
Period

Mean STD
Sharpe
Ratio

Num
Stocks

α βMKT βSMB βHML βUMD R2

S&P 500 - 0.67 4.35 0.12 501.46 0.01 0.98∗∗∗ -0.17∗∗∗ 0.02∗∗∗ -0.02∗∗∗ 99.51
Additions 1 month -0.42 8.06 -0.07 2.01 -1.22∗∗∗ 0.94∗∗∗ 0.42∗∗∗ -0.01 0.09 33.51
Additions 3 months 0.35 7.14 0.03 6.00 -0.57∗ 1.12∗∗∗ 0.46∗∗∗ -0.09 0.14∗∗ 59.24
Additions 6 months 0.60 6.38 0.07 11.96 -0.28 1.15∗∗∗ 0.32∗∗∗ -0.16∗∗ 0.10∗∗ 73.33
Additions 1 year 0.57 6.13 0.07 23.95 -0.25 1.10∗∗∗ 0.34∗∗∗ -0.28∗∗∗ -0.05 83.07
Additions 2 years 0.69 6.27 0.09 46.62 -0.12 1.12∗∗∗ 0.32∗∗∗ -0.26∗∗∗ -0.15∗∗∗ 86.65
Additions 5 years 0.73 6.52 0.09 105.52 -0.12 1.15∗∗∗ 0.39∗∗∗ -0.19∗∗∗ -0.21∗∗∗ 89.24
Deletions 1 month -0.30 6.18 -0.05 0.88 -0.84∗∗ 0.52∗∗∗ 0.40∗∗∗ -0.00 0.01 23.23
Deletions 3 month 0.12 6.49 -0.00 2.59 -0.68∗∗ 0.97∗∗∗ 0.41∗∗∗ -0.17∗∗ 0.06 56.62
Deletions 6 month 0.59 6.31 0.07 5.08 -0.28 1.12∗∗∗ 0.36∗∗∗ -0.18∗∗∗ 0.09∗∗ 73.39
Deletions 1 year 0.61 6.09 0.08 10.02 -0.21 1.09∗∗∗ 0.36∗∗∗ -0.29∗∗∗ -0.06∗ 83.58
Deletions 2 years 0.73 6.23 0.10 18.95 -0.08 1.11∗∗∗ 0.35∗∗∗ -0.27∗∗∗ -0.15∗∗∗ 87.13
Deletions 5 years 0.76 6.48 0.10 40.23 -0.08 1.13∗∗∗ 0.41∗∗∗ -0.20∗∗∗ -0.22∗∗∗ 89.72

The table compares the monthly returns of the calendar-time portfolio constructed by recently added
or deleted stocks. The second column indicates how long each stock is held in the portfolio after the
event. Each stock’s dividends are reinvested in it, and the first row shows similar measures for the
S&P 500 total return index as a benchmark. Columns (3) and (4)) show, respectively, the arithmetic
mean and standard deviation of monthly returns. Column (5) measures the Sharpe ratio, defined as the
average of monthly excess returns over their standard deviation. Column (6) shows the average number
of stocks in the portfolios. Columns (7) to (12) show the results of the regression of monthly returns
based on Carhart (1997) four-factor model. The sample period is (2000-01, 2021-06). Significance levels
are marked as: ∗p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.

balance sheet data was available at the time of the index announcement. To measure

profitability and efficiency, I consider three key metrics: Return on Assets (ROA), Profit

Margin (net income/sales), and Operating ROA (operating income/assets), where oper-

ating income is defined as operating income before depreciation, amortization, and taxes,

plus interest income.

The event study results shown in Figure 10 reveal that, for all the suggested measures,

the S&P 500 additions are at their highest around the time of the index announcement.

This result suggests that the index committee selected firms for inclusion when they

had recently experienced several quarters of growth, leading to their best recent stance,

as reflected in their financial ratios. However, this good performance is not necessarily

sustainable and is subject to mean reversion, as all the measures decline right after the

inclusion.

Index deletion exhibits an inverse pattern. These firms are deleted from the index

right after they report their first negative net income, usually after several quarters of

decreasing net income starting approximately two years before the deletion event. De-

creasing operating ROA in the third row confirms that the negative net income for these

firms is not just a financial figure due to higher interest paid, which is coming from lower

operating efficiency. The figure also shows that a similar mean reversion mechanism also
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Figure 10: Fundamental trends in index additions and deletions

The figure compares fundamentals in index additions and deletions in a quarterly event study framework.
Quarter zero represents the last fiscal quarter for which balance sheet data was available at the index
announcement. Confidence intervals are shown in light shadow around the means. Fundamental measures
are calculated as ROA = net income/ assets, Profit Margin = net income/ Sales, and OROA = operating
income/ assets. The sample period is (2000-01, 2021-06). 95% condence intervals are shown in light
shadow around the means.

works for these firms, meaning that after they are deleted from the index at their lowest-

ever instance, they start to recover. In five years, most measures are already near their

previous average amounts.

On the contrary, the pattern of S&P 500 discretionary deletions is characterized by
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firms being excluded from the index after reporting a negative net income, preceded by

a trend of declining net income over multiple quarters. This decline in net income is

not solely attributable to higher interest payments but also reflects decreased operating

efficiency, as indicated by declining operating return on assets (ROA). After their removal

from the index, these firms tend to experience a mean reversion effect, and most of their

measures start to recover, approaching their previous levels. The measures for forced

deletions, on the other hand, appear to be relatively unchanged, reassuring that these

firms’ removal from the index was likely a result of external factors rather than their

financial performance.

5 Conclusion

While it is widely acknowledged that changes in index composition can result in significant

abnormal returns for the affected stocks, the precise cause of these outcomes has yet to be

fully understood. Index composition changes result in massive demand shifts from index

followers. Yet, it was unknown if this demand alone could explain the abnormal returns

experienced by added and deleted firms or if other factors, such as the revelation of new

information, heightened attention towards the stocks or improved awareness about it, or

overreaction, played a partial role in these seemingly anomalous stock returns.

This study shows that passive index funds’ demand shifts due to their portfolio re-

balancing substantially impact stocks’ prices, liquidity, and volatility. By focusing on

index incumbents instead of actively involved stocks, I measured the price impact and

price elasticity of index funds’ demand using reduced form estimations on a large sample

of stocks without the confounding effect of information. The results indicate that a 1%

shift in the index funds’ demand, unrelated to information or fundamentals, leads to a

significant 40 basis points change in a stock’s price between the announcement of stock

composition changes and their implementation. From this total, 34 basis points were

realized during the last two days before the implementation, where these demand shifts

were broadly anticipated. This effect was particularly pronounced in the earlier part of

the sample, with an estimated price impact multiplier close to one. These findings show

that the demand curves of stocks are flattening over time. This study also shows that

this reduction is indebted to a reduction in overall arbitrage risk of stocks due to closer

substitutability that makes the market more efficient.

Building on these insights, I have investigated whether demand alone can account for

the magnitude of abnormal returns experienced by S&P 500 additions and deletions. My

results indicate that the estimates from a demand-driven model trained on the sample

of index incumbents are sufficient to predict the magnitude and trend of index effect on
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additions and deletions, which calls into question the role and net effect of informational

factors suggested in prior research.

Finally, by examining the long-term performance of recently added or deleted stocks, I

found that additions to the index typically occur when firms are at their best fundamental

stance rather than when they have the highest growth potential. Conversely, deletions

occur when firms report a negative net income following a trend of declining performance.

These results suggest mean reversion in the firms’ performance, reject the hypothesis that

S&P 500 decisions are made based on insider information or superior analytical power,

and show that index decisions are rather retrospective.

41



References

Afego, P. N. (2017). Effects of changes in stock index compositions: A literature survey.
International Review of Financial Analysis, 52:228–239.

Amihud, Y. and Mendelson, H. (1986). Asset pricing and the bid-ask spread. Journal of
Financial Economics, 17(2):223–249.

Basak, S. and Pavlova, A. (2013). Asset prices and institutional investors. American
Economic Review, 103(5):1728–1758.

Ben-David, I., Franzoni, F., and Moussawi, R. (2018). Do etfs increase volatility? The
Journal of Finance, 73(6):2471–2535.

Beneish, M. D. and Whaley, R. E. (1996). An anatomy of the s&p game: The effects of
changing the rules. The Journal of Finance, 51(5):1909–1930.

Bennett, B., Stulz, R. M., and Wang, Z. (2021). Keeping up with the joneses and the
real effects of s&p 500 inclusion. Working Paper.

Cai, J. (2007). What’s in the news? information content of s&p 500 additions. Financial
Management, 36(3):113–124.

Carhart, M. M. (1997). On persistence in mutual fund performance. The Journal of
finance, 52(1):57–82.

Chan, K., Kot, H. W., and Tang, G. Y. (2013). A comprehensive long-term analysis of
s&p 500 index additions and deletions. Journal of Banking & Finance, 37(12):4920–
4930.

Chang, Y.-C., Hong, H., and Liskovich, I. (2014). Regression Discontinuity and the Price
Effects of Stock Market Indexing. The Review of Financial Studies, 28(1):212–246.

Chen, H., Noronha, G., and Singal, V. (2004). The price response to s&p 500 index
additions and deletions: Evidence of asymmetry and a new explanation. The Journal
of Finance, 59(4):1901–1930.

Danbolt, J., Hirst, I., and Jones, E. (2018). Gaming the ftse 100 index. The British
Accounting Review, 50(4):364–378.

Denis, D. K., McConnell, J. J., Ovtchinnikov, A. V., and Yu, Y. (2003). S&p 500 index
additions and earnings expectations. The Journal of Finance, 58(5):1821–1840.

Fernandes, M. and Mergulho, J. (2016). Anticipatory effects in the ftse 100 index revi-
sions. Journal of Empirical Finance, 37:79–90.

Gabaix, X. and Koijen, R. S. J. (2022). In search of the origins of financial fluctuations:
The inelastic markets hypothesis. Working Paper.

Greenwood, R. and Sammon, M. C. (2022). The disappearing index effect. Working
Paper.

42



Harris, L. and Gurel, E. (1986). Price and volume effects associated with changes in
the s&p 500 list: New evidence for the existence of price pressures. The Journal of
Finance, 41(4):815–829.

Hartzmark, S. M. and Solomon, D. H. (2022). Predictable price pressure. Working Paper.

Heath, D., Macciocchi, D., Michaely, R., and Ringgenberg, M. C. (2020). Do index funds
monitor? Review of Financial Studies.

Kaul, A., Mehrotra, V., and Morck, R. (2000). Demand curves for stocks do slope down:
New evidence from an index weights adjustment. The Journal of Finance, 55(2):893–
912.

Lou, D. (2012). A Flow-Based Explanation for Return Predictability. The Review of
Financial Studies, 25(12):3457–3489.

Lou, D., Yan, H., and Zhang, J. (2013). Anticipated and Repeated Shocks in Liquid
Markets. The Review of Financial Studies, 26(8):1891–1912.

Lynch, A. W. and Mendenhall, R. R. (1997). New evidence on stock price effects associ-
ated with changes in the s&p 500 index. The Journal of Business, 70(3):351–383.

Mase, B. (2007). The impact of changes in the ftse 100 index. Financial Review,
42(3):461–484.

Merton, R. C. et al. (1987). A simple model of capital market equilibrium with incomplete
information.

Pandolfi, L. and Williams, T. (2019). Capital flows and sovereign debt markets: Evidence
from index rebalancings. Journal of Financial Economics, 132(2):384–403.

Parker, J. A., Schoar, A., and Sun, Y. (2020). Retail financial innovation and stock
market dynamics: The case of target date funds. Technical report, National Bureau of
Economic Research.

Patel, N. and Welch, I. (2017). Extended stock returns in response to s&p 500 index
changes. The Review of Asset Pricing Studies, 7(2):172–208.

Pavlova, A. and Sikorskaya, T. (2022). Benchmarking Intensity. The Review of Financial
Studies.

Petajisto, A. (2009). Why do demand curves for stocks slope down? Journal of Financial
and Quantitative Analysis, 44(5):10131044.

Schmickler, S. (2020). Asset fire sales or assets on fire? Working Paper.

Shiller, R. J. (1981). Do stock prices move too much to be justified by subsequent changes
in dividends? THE AMERICAN ECONOMIC REVIEW.

Shleifer, A. (1986). Do demand curves for stocks slope down? The Journal of Finance,
41(3):579–590.

43



Wurgler, J. and Zhuravskaya, E. (2002). Does arbitrage flatten demand curves for stocks?
The Journal of Business, 75(4):583–608.

44



A Appendix

A.1 An example of incumbent weight changes

This section offers a simple example to illustrate the dynamics of index incumbent weight

changes when there is a heterogeneity in the weight of added and deleted firm(s). Assume

some firm X with a free-float market value of FFMVX is going to replace firm Y with

a free-float market value of FFMVY in the composition of S&P 500. Suppose day t + 1

is the effective day this index reconstitution and the free-float market value of all index

incumbents at the close of day t equals FFMVincs. Let firm A be a representative index

incumbent. Therefore A has already been in the index before the reconstitution and also

remains in it afterwards. Table 9 compares the weight and size outcomes before and after

the reconstitution.

Table 9: Changes happening in a reconstitution event

At the close of day t Before the open of day t+ 1
Constituents All incumbents + Y All incumbents + X
Total FFMV of index FFMVincs + FFMVY FFMVincs + FFMVX
wX 0 FFMVX

FFMVincs+FFMVX

wY FFMVY

FFMVincs+FFMVY
0

wA FFMVA

FFMVincs+FFMVY

FFMVA

FFMVincs+FFMVX

This tables summarises the changes that happen in a reconstitution day. X is a firm that is added to
the index in this day, Y is the firm that is dropped from it, and A is an already index constituent than
continues to remain in the index list. Dat t+ 1 is the effective day of this reconstitution.

Suppose that the reconstitution results in a 1% increase in the total FFMV of index,

that is (FFMVincs + FFMVX) = (1.01) ∗ (FFMVincs + FFMVY ). The change in the

weight of A will be

∆wA
t+1 = wA

before open t+1 − wA
at the close t =

FFMVA
FFMVincs + FFMVX

− FFMVA
FFMVincs + FFMVY

= wA
at the close t(

1

1.01
− 1) ' (−0.01)wA

at the close t

Therefore, in a nutshell, when a firm is added to the S&P 500 and achieves 1% more

weight in the index than the firm it has replaced, all other firms in the index will lose

about 1% of their weight in the index after this reconstitution.

Note that since this non-market-driven action has changed the index FFMV overnight,

the index divisor will be adjusted to avoid any jump in the index level. In this simple ex-
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ample, index FFMV has increased 1% overnight. So the index divisor will be increased

exactly 1% as well. Therefore the last ratio in the equation (4) of Section 2 will be:

Divisort
Divisort+1

= 0.99

and this is precisely the channel through which the difference in the weight of additions

and deletions splis over the weight of index incumbents.
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