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Abstract
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is the inverted U-shaped relationship between the scale of investment and debt

capacity of a �rm which faces binding credit constraints. We show that this non-
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1 Introduction

The corporate �nance literature examining the impact of �nancing constraints on

corporate investment decisions allows for two alternative approaches for identifying �-

nancing constraints. Under the �rst approach, credit constraints are interpreted as the

limited ability to borrow, caused by the cost wedge between internal and external �nanc-

ing. The extensive empirical literature relying on this de�nition examines the relation

between investment-to-cash �ow sensitivities and the tightness of �nancial constraints.

The seminal paper of Fazzari et al. (1988) reports that investment-cash �ow sensitivi-

ties have to be much stronger for the �rms that are likely to be �nancially constrained.

However, Kaplan and Zingales (1997) provide con�icting evidence showing that less �-

nancially constrained �rms exhibit higher investment cash-�ow sensitivities. One of the

possible explanations of such a discrepancy in the results might be related to the fact

that Fazzari et al. (1988) implicitly assume that �rms are able to raise external funds as

long as they can pay for external �nancing. In contrast, the classi�cation approach, used

by Kaplan and Zingales (1997) to identify the degree of �nancial constraints, accounts

for the di�culties the �rms have in obtaining access to external �nancing.1

Indeed, it is possible that �rms limit their investment because of the low availabil-

ity of credit, rather than because of the high costs of external �nancing (Greenwald et

al. (1984)). Thus, the alternative approach to deal with credit constraints is to consider

them in the form of credit quantity rationing. Quantity rationing often results in response

to information asymmetry problems (Ja�e and Russel (1999)). It can also arise in the

context of collaterized lending, given that the �uctuations of collateral value induce the

changes of the �rm's debt capacity.2 Empirical evidence suggests the existence of a neg-

ative relationship between the degree of credit rationing and the scale of investment (see,

for example, Gan (2007), Gelos and Werner (2002), Almeida and Campello (2007)). On

the theoretical side, however, the literature is still scarce and inconclusive. In line with

their empirical �ndings, Almeida and Campello (2007) build a theoretical model showing

that investment-cash �ow sensitivity increases with asset tangibility for �nancially con-

strained �rms, but remains neutral for unconstrained �rms. The similar result is reported

by Chaney et al. (2008). However, Wong (2009) shows that the scale of investment is

not a�ected by the degree of credit rationing, because a positive e�ect of higher project

1Moyen (2004) shows that access to external �nancing matters in the investment-cash �ow sensitivity
analysis. Her empirical analysis reveals that the investment-cash �ow sensitivities of the �rms with no
access to external �nancing turn out to be lower as compared to that of the �rms facing no restrictions
in access to external �nancing.

2Here, reference can be made to the macroeconomic literature which identi�es a so-called "collateral
channel" to explain the transmissions of negative shocks on asset prices to the real sector (see Kiyotaki
and Moore (1997), Bernanke and Gertler (1989), (1990)).
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return as a result of larger investment would be o�set by the negative e�ect of higher

default risk.

In the present paper, we attempt to get a better understanding of how the credit quan-

tity rationing (hereafter termed "debt capacity") a�ects corporate investment. We build

our model on Belhaj and Djimbissi (2007)3 extending their framework by the possibility

of choosing the optimal investment scale. We consider a �rm endowed with an option

to set-up an investment project, which can be partially �nanced by debt. There are two

sources of �nancial frictions related to debt �nancing: (i) credit quantity rationing and

(ii) the explicit costs of debt issuance, both proportional and lump-sum. In practice, debt

issuance costs typically involve underwriting, registration and legal fees. These costs can

be quite important, especially, in the case of public debt o�erings.4 Given that �nancing

and investment decisions have to be jointly determined in the described framework, we

analyze the impact of �nancial frictions on the optimal choice of investment timing and,

especially, on the optimal choice of investment scale.

Two alternative cases are examined. In the �rst case, the �rm can �nance the entire

investment expenditure without binding credit constraints. Here, investment decisions

are found to be una�ected by the degree of credit rationing. Yet, they are sensitive to the

magnitude of debt issuance costs. In particular, we �nd that, faced with higher lump-sum

debt issuance costs, the �rm will delay investment but will set up a larger investment

project to compensate the higher sunk costs of debt �nancing by higher return. The

higher proportional costs of debt issuance induce the �rm to delay investment as well,

however, without producing any e�ect on the optimal investment scale.

In the second case, the �rm raises a maximum feasible amount of debt allowed by

credit constraints. Here, we observe a strong impact of �nancial constraints on investment

decisions. Consistent with the existing theoretical �ndings (see, for example, Belhaj

and Djimbissi (2007), Shibata and Nishihara (2011)), the optimal investment trigger

is found to be U -shaped when plotted against debt capacity. In contrast, there is an

inverted U -shaped relationship between the optimal investment scale and debt capacity.

Therefore, the �rms with intermediate debt capacity will invest earlier and establish larger

investment projects, whereas the �rms with relatively low/high debt capacity will delay

investment and set up smaller projects. Interestingly, the inverted U -shaped relationship

between investment scale and debt capacity emerges only in the presence of non-zero

lump-sum debt issuance costs. This observation allows us to explain our result: given

that earlier investment implies a higher expected value of lump-sum debt issuance costs,

3Belhaj and Djimbissi (2007) study the impact of debt capacity on the optimal choice of investment
timing and �nancing structure.

4For example, Datta, Iscandar-Datta and Patel (1997) document that total expenses of debt issuance
might vary between 0.53% and 7.38%, with an average of 2.96% of the total debt issuance.
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investors will slightly increase project scale to compensate higher expected sunk costs of

debt �nancing by higher expected return.

The divergence of our main result with the existing empirical and theoretical �ndings

may have several explanations. Firstly, the empirical studies generally do not allow for

any distinctions between the initial investment (building a new plant) and realization

of growth option opportunities (improving production capacity of an existing plant).

In this context, it might be di�cult to disentangle the pure e�ect of credit quantity

rationing in the case where investment decisions are made by already existing �rms. The

availability of external funds for such �rms can also depend on their �nancial performance,

internal funds, as well as on their current level of debt. Secondly, existing empirical

studies typically do not consider the impact of �nancial constraints on the timing of

lumpy investment, whereas the investment timing and investment scale should be jointly

determined.5 Finally, the literature on the topic we are aware of does not account for

the explicit costs of external �nancing, when analyzing the impact of credit quantity

rationing on corporate investment decisions. Yet, these costs can be quite important,

which would induce a �rm to adjust its investment policy. It is actually the impact of

lump-sum debt issuance costs in the dynamic context of investment, which explains the

contrasting divergence of our result with that obtained by Wong (2009).

The reminder of the paper is organized as follows. Section 2 presents the model.

Section 3 describes the optimal investment decisions of an all-equity �nanced �rm. In

Section 4 we analyze the optimal �nancing and investment decisions of a levered �rm.

Section 5 concludes. The results of numerical analysis are reported in Appendix B.

2 The model

We consider the setting where investors are risk neutral and discount cash �ows at a

constant rate r. An owner-managed �rm is endowed with a perpetual investment option.

The investment project can be undertaken at irreversible costs I(q), which are increasing

with the project scale q > 0. Moreover, we assume that I(0) ≥ 0 and I ′′(q) > 0. Project

scale a�ects the scale of stochastic earnings before interest and taxes (EBIT), qXt, where

Xt evolves according to:

dXt = µXtdt+ σXtdWt, (1)

where µ < r and σ are constant parameters and W = {Wt,Ft, 0 ≤ t <∞} is a standard

Brownian motion on the probability space (Ω,F ,P). Operating cash �ows are taxed at

5The only exception is the study by Whited (2006) that examines the impact of �nancial constraints
on the timing of undertaking large investment projects. However, Whited (2006) interprets �nancial
constraints as the additional costs of adjusting capital stock, rather than as credit quantity rationing.

3



a constant rate θ < 1.

A �rm has access to debt �nancing. To �nance a part of investment costs, equity

holders can raise an amount b ≤ ψI(q) of debt at the investment date τ . Here, the

parameter ψ re�ects the exogenously given degree of credit quantity rationing. The

remaining fraction of investment costs, I(q)− b > 0, has to be �nanced by equity capital.

Issuing debt is costly.6 As in Belhaj and Djembissi (2007), we consider a linear form of

debt issuance costs, kb+K, with both variable and lump-sum components.

Debt is perpetual, so that a constant coupon C is continuously paid to debt holders

until the �rm goes bankrupt. The optimal default trigger maximizing the �rm's equity

value is given by the standard formula:

xL(q, C) =
β1

β1 − 1

r − µ
r

C

q
≡ δ

C

q
, (2)

where β1 < 0 is a root of σ2/2β(β − 1) + µβ = r.

In the case of a default, debt holders recover a fraction (1−γ) of the �rm's liquidation

value, where γ re�ects bankruptcy costs. After the default, the �rm will be run by new

owners as an unlevered concern. Thus, the �rm's liquidation value is equal to the total

expected value of EBIT evaluated at the default trigger.

Equity holders optimally decide about the timing, the scale and the �nancing structure

of investment, maximizing the ex-ante equity value under the exogenously given credit

constraints. For any coupon C and investment scale q, let D(Xτ , q, C) denote the market

value of debt evaluated at the investment time τ . By the absence of arbitrage, we should

have b = D(Xτ , q, C). Then, the equity holders' maximization program can be formalized

as follows:

Supτ,q,C E
[
e−rτ (V (Xτ , q, C)− I(q)− kD(Xτ , q, C)−K)

]
s.t. D(Xτ , q, C) ≤ ψI(q),

(3)

where V (Xτ , q, C) denotes a value of the �rm at the investment time τ (see Appendix

A.1 for the expressions of contingent claims).

To have a benchmark, we start by analyzing the optimal investment decisions of an

all-equity �nanced �rm. Then, we study the interaction between �nancial and investment

decisions of a levered �rm.

6Issuing equity might be costly as well. However, as shown in Appendix A, this will not impact our
main �nding, so that we let equity issuance costs be zero.
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3 Investment decisions of an all-equity �nanced �rm:

a benchmark

Consider �rst a benchmark case where ψ = 0. In this case the investment project

is entirely �nanced by equity and the �rm never goes bankrupt. Let xeI denote the

investment trigger such that τ = inf{t ≥ 0 : Xt = xeI}. Then, for any current value X0,

the maximization problem of equity holders can be rewritten as follows:

SupxeI ,qe

[
((1− θ)νqexeI − I(q))

(
X0

xeI

)β2]
, (4)

where ν = (r − µ)−1 and β2 > 1 is a positive root of σ2/2β(β − 1) + µβ = r.

The optimal investment scale then satis�es the equation:

qI ′(qe) =
β2

β2 − 1
I(qe), (5)

whereas the optimal investment trigger is given as follows:

xeI =
I ′(qe)

(1− θ)ν
. (6)

Therefore, in the case of the all-equity �nanced �rm, the choice of the optimal invest-

ment scale will be made independently of the investment timing. However, the choice of

the optimal investment timing will be a�ected by the investment scale. Since I ′′(q) > 0,

we can easily conclude that larger investment projects will be delayed.

Using the fact that the �rm's value at the investment date amounts to V (xeI , q
e) =

(1 − θ)νqexeI , we can restate the optimal investment rule in terms of Tobin's QT ratio

computed at the investment date:7

QT ≡
V (xeI , q

e)

I(qe)
=

β2
β2 − 1

. (7)

Note that QT is increasing on both µ and σ, whereas the optimal investment scale

qe is increasing on QT . Thus, the increase in the expected earnings' rate or earnings'

volatility will delay investment but, at the same time, will induce investors to set up

larger investment projects.8

7It follows from (5) that the elasticity of investment expenditure to the investment scale also amounts
to β2/(β2 − 1).

8The e�ect produced by higher volatility is in line with Bar-Ilan and Strange (1999), who �nd that
the increase of output price uncertainty will delay investment, simultaneously increasing its scale.
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4 Investment and �nancing decisions of a levered �rm

4.1 The case of non-binding credit constraints

Let us now turn to the analysis of the optimal �nancing and investment decisions of

a levered �rm. First, we are going to discuss a solution to the maximization problem in

the case when ψ is su�ciently high, so that the �rm can raise the required amount of

debt without binding the credit constraints. In this case, credit constraints in (3) can be

omitted and the program can be resolved in two steps: (i) �rst, for any �xed investment

parameters q and xI , we de�ne the optimal coupon C∗(q, xI); (ii) then, the problem

is solved for the remaining parameters of investment policy, and the optimal coupon is

recovered.

For any given q and xI , the optimal coupon C∗(q, xI) maximizing the �rm's value net

of debt issuance costs is given by:

C∗(q, xI) =
h(k)

δ
qxI , (8)

where h(k) denotes

h(k) =

[
θ − k

(1− β1)(θ − k)− β1(1− θ)(γ + k(1− γ))

]− 1
β1

. (9)

Replacing the optimal coupon C∗(q, xI) into the maximization problem of equity

holders yields:

SupxI ,q ((1− θ)νqxI + (θ − k)h(k)νqxI − I(q)−K)

(
X0

xI

)β2
. (10)

The solution of the above problem is given by the optimal investment scale qf (K),

satisfying the equation

qfI ′(qf ) =
β2

β2 − 1
(I(qf ) +K), (11)

and the optimal investment trigger xfI , such that

xfI =
I ′(qf )

(1− θ)ν + (θ − k)h(k)ν
. (12)

Lemma 1 The optimal investment scale qf (K) is increasing on K.

� Let f1(q) and f2(q,K) denote the left and the right side of (11) respectively. Note

that both f1(q) and f2(q,K) monotonically increase on q and f2(0, K) > f1(0) (see Fig.
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1). Since qf ′1(q)− f1(q) = q2I ′′(q) and I ′′(q) > 0, the function f1(q) is convex. Thus, we

have f ′′1 (q) > 0. Then, (11) has at most one solution, qf (K). Since ∂f2(q,K)
∂K

> 0, we have
∂qf (K)
∂K

> 0.�

Figure 1: The impact of K on qf (K).

Thus, similar to the benchmark case with all-equity �nancing, the optimal investment

scale of a �nancially unconstrained levered �rm is set independently of the optimal in-

vestment time. Moreover, it does not depend on the �nancing structure. However, under

non-zero lump-sum debt issuance costs, a levered �rm will realize larger investment as

compared to an all-equity �nanced �rm, since qf (K) increases on K (see Lemma 1).

Indeed, higher K will induce the �rm to raise more debt and to set a larger project, in

order to compensate higher sunk costs of investment by higher project return. At the

same time, proportional debt issuance costs will have no impact on the optimal choice

of investment scale: higher k will reduce the value of tax shields associated with debt

�nancing, and this impact will be entirely captured by the optimal choice of Cf and xfI .

As in the benchmark case, the optimal investment trigger, xfI , is positively related

with the chosen investment scale. Moreover, xfI is increasing on both k and K, so that

investment will be postponed under higher debt issuance costs. However, due to the

bene�cial e�ect of tax shields, the investment trigger of a levered �rm would be lower

than that of an all-equity �nanced �rm, when debt issuance costs are relatively small.

To examine the impact of debt issuance costs on the optimal �nancing structure,

we perform numerical analysis. Its results are reported in Table 1.a-1.b of Appendix

B. We �nd that the optimal coupon Cf and, thus, the �rm's leverage are increasing on
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K, since the �rm will tend to reduce the average cost of debt issuance by raising more

debt. However, the amount of debt decreases on k, since proportional debt issuance costs

destroy the value of tax shields. As a result, the �rm's leverage ratio D(xfI , q
f , Cf )/I(q)f

tends to zero when k → θ. We also observe that the net present value of the levered

project calculated at the investment date is higher than that of the unlevered project.

Thus, due to the positive e�ect of tax shields and the ability to realize larger investment,

investors will bene�t from the access to debt �nancing, even though issuing debt is costly.

4.2 The case of binding credit constraints

Consider now the optimal investment and �nancing decisions of the �rm with limited

debt capacity, so that D(Xτ , q, C) = ψI(q). For any given investment scale q and coupon

C, binding credit constraints provide the following investment trigger:

xI(q, C) =

[
1− ψrI(q)/C

1− (1− γ)(1− θ)β1/(β1 − 1)

] 1
β1

xL(q, C), (13)

where xL(q, C) is given by (2).

Then, the equity holders' problem (3) can be rewritten as follows:

Supq,C (V (q, C)− I(q)(1 + kψ)−K)

(
X0

xI(q, C)

)β2
, (14)

where V (q, C) is �rm value de�ned under the investment threshold xI(q, C).

Let q∗ and C∗ denote the solution of the maximization problem (14). Then, replacing

q∗ and C∗ in (13) will deliver the optimal investment trigger.

It is worth noting that, under non-zero lump-sum debt issuance costs, the optimal

investment scale q∗ will be a�ected by both investment timing and debt capacity. To

illustrate this, we use the Lagrangian method to derive the following optimality condition

(see Appendix A.2):

qI ′(q) =
β2

β2 − 1

I(q) +K

(
1− λψ

(
xI
X0

)β2)−1 , (15)

where X0 is a current value of the state variable and λ is the optimal Lagrange multiplier.

Proposition 1 When credit constraints are binding, the optimal investment decisions of

the �rm are a�ected by the �nancing structure of investment.

Numerical simulations (see Table 2.c in Appendix B) suggest the existence of the in-

verted U -shaped relationship between the optimal investment scale q∗ and the �rm's debt
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capacity ψ. At the same time, in line with the theoretical �ndings of Belhaj and Djimbissi

(2007) and Shibata and Nishihara (2011), the optimal investment trigger appears to be

U -shaped when plotted against the debt capacity ψ.9 Thus, the �rms with relatively

low or relatively high levels of debt capacity will undertake smaller projects and delay

investment, whereas the �rms with intermediate levels of debt capacity will set up larger

projects and invest earlier (see Figure 2).

Figure 2: The impact of debt capacity on the optimal investment decisions.

To explain this phenomenon, counterintuitive at �rst glance, consider the setting of

Wong (2009), where there are no debt issuance costs. In the absence of debt issuance

costs, the choice of investment scale made by the �rm facing binding credit constraints is

una�ected by the �nancing structure of investment. Wong (2009) shows that, when credit

constraints are binding, the marginal costs of larger investment would o�set its marginal

bene�ts. As a result, the �nancially-constrained �rm will choose the same investment

scale as it would have chosen, if there was no access to debt �nancing. However, in the

considered setting, the presence of lump-sum debt issuance costs breaks this balance.

Note that, for the �rms with the intermediate levels of debt capacity, it is optimal to

accelerate investment. However, earlier investment implies a higher expected value of

lump-sum debt issuance costs. Thus, in order to compensate higher expected sunk costs

of debt �nancing associated with earlier investment, the �rm with the intermediate level

of debt capacity will slightly increase investment scale. Numerical experiments show that

the changes of the optimal investment scale with respect to the changes of debt capacity

are relatively small. This allows us to conclude that the non-monotonicity of investment

on the degree of credit constraints is uniquely due to the e�ect of lump-sum debt issuance

costs in the dynamic context of investment.

Expression (15) also shows that, in contrast to the case where credit constraints

9This pattern results from the trade-o� between tax-shield bene�ts and bankruptcy costs of debt.
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are not binding, the optimal choice of investment scale is a�ected by proportional debt

issuance costs k as well. This result arises due to the fact that, under the binding

credit constraints, the choice of investment scale becomes inseparable from the choice of

investment trigger, whereas the investment trigger is a�ected by the proportional debt

issuance costs through the link with the optimal coupon. Numerical experiments show

that the optimal investment scale, as well as the optimal volume of debt, is decreasing

with k.

5 Concluding remarks

Intuitively, it would be natural to assume the existence of a positive monotonic rela-

tionship between the optimal scale of investment and the debt capacity of the �rm which

faces binding credit constraints. Yet, we show that this is not the case, if the �rm incurs

the lump-sum costs of debt �nancing. Thus, the main practical implication ensuing from

our analysis is that the usage of the investment scale as an implicit measure of credit

constraints might be misleading.

It is also worth noting that a practical interpretation of the inverted U-shaped re-

lationship between the investment scale and debt capacity may vary depending on the

nature of the parameter ψ.

First, ψ may re�ect the tangibility of investment project, meaning that creditors lend

against the value of tangible assets (Almeida and Campello (2007)). This interpretation

�ts well with the setting where, for any given project scale q, the allocation between

tangible and intangible assets is relatively rigid, so that investors can not voluntary choose

the degree of asset tangibility.10 In this case, our model predicts that the projects with

relatively low and relatively high degrees of asset tangibility would attract less investment,

as compared to the projects with a better balance between tangible and intangible assets.

Second, ψ may re�ect market the expectations about the market value of investment

project. In this light, our main result might be interpreted as the non-monotonicity of

investment on the phase of the economic cycle. A surprising conclusion, which can be

drawn in such a case, is that, during the "boom" phase of economic cycle characterized

by overoptimistic expectations, �rms will invest less than in the "moderate" phase of

economic cycle characterized by lower expectations.

Finally, as mentioned by many existing studies (see, for example Whited (1992), Ja�e

and Russel (1999)) quantity rationing can arise as a consequence of information asym-

10For example, the construction of energy and power generation plants mostly implies investment in
tangible assets. In contrast, for alcohol and tobacco businesses, the largest part of investment consists
of the costs of manufacturing and distribution permits (intangible assets).
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metry problems. In this case, (1−ψ) can be viewed as the minimum rate of shareholders'

contribution required by a bank to prevent moral hazard. In such a context, our model

suggests that less stringent requirements on the minimum amount of capital contributions

from shareholders would not necessarily encourage larger investment.
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6 Appendix A. Mathematical proofs

A.1. Valuation of contingent claims

Equity value

The �rm's equity value represents the expected present value of EBIT net of coupon

payments and taxes:

E(Xt, q, C) = E
[∫ τL

t

e−r(s−t)(1− θ)(qXs − C)ds

]
, (A1)

where τL = inf{t ≥ 0 : Xt = xL} denote liquidation time. Solving a corresponding ODE

1/2σ2X2E ′′(X) + µXE ′(X)− rE(X) + (1− θ)(qX − C) = 0, (A2)

subject to boundary condition

E(xL, q, C) = 0, (A3)

yields:

E(Xt, q, C) = (1− θ)

[
qνXt −

C

r
+

(
C

r
− qνxL(q, C)

)(
Xt

xL(q, C)

)β1]
, (A4)

where ν = (r − µ)−1, β1 < 0 is a root of characteristic equation σ2/2β(β − 1) + µβ = r

and the optimal liquidation rule xL(q, C), such that E ′xL(Xt, q, C) = 0, is given by:

xL(q, C) =
β1

β1 − 1

1

qν

C

r
≡ δ

C

q
. (A5)

Debt value

Let VL(xL, q, C) denote the �rm's liquidation value:

VL(xL, q, C) = E

[∫ +∞

τL

e−r(s−τL)(1− θ)qXsds

]
= (1− θ)qνxL(q, C), (A6)

where τL = inf{t ≥ 0 : Xt = xL(q, C)}.
The value of the �rm's debt represents the expected present value of coupon payments

up to liquidation plus the �rm's liquidation value net of bankruptcy costs.

D(Xt, q, C) = E
[∫ τL

t

e−r(s−t)Cds+ e−r(τL−t)(1− γ)VL(xL, q, C)

]
. (A7)
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The value of the �rm's debt is given by:

D(Xt, q, C) =
C

r
−
(
C

r
− (1− γ)(1− θ)qνxL(q, C)

)(
Xt

xL(q, C)

)β1
. (A8)

A total value of the �rm

A total value of the �rm is given by the sum of equity and debt values:

V (Xt, q, C) = (1− θ)qνXt +
θC

r
−
(
θ + γ(1− θ) β1

β1 − 1

)
(qνxI)

β1

(
β1 − 1

β1

)β1 ( r
C

)β1−1
.

(A9)

A.2. Proof of Proposition 1

Consider the optimization problem of equity holders:

Supτ,q,C<∞ E
[
e−rτ (V (Xτ , q, C)− I(q)− kD(Xτ , q, C)−K)

]
s.t. D(Xτ , q, C) ≤ ψI(q)

(A10)

To simplify the exposition of calculus, we introduce the following notation:

H(xI , q, C) = (qνxI)
β1

(
β1 − 1

β1

)β1 ( r
C

)β1−1
, (A11)

A1 = 1 + (1− γ)(1− θ) β1
β1 − 1

, (A12)

A2 = θ + γ(1− θ) β1
β1 − 1

. (A13)

Then, the Lagrangian of the above problem, L(xI , q, C), can be written as follows:

L(xI , q, C) =

{
(1− θ)qνxI − I(q)−K + (θ − k)

C

r
+ (kA1 − A2)H(xI , q, C)

}(
x0
xI

)β2
+

+ λ

{
ψI(q)− C

r
+ A1H(xI , q, C)

}
,

(A14)

where β2 > 0 is the roots of σ2/2β(β − 1) + µβ = r and λ is the Lagrange multiplier.

The Kuhn-Tucker conditions for the above maximization program are given by:

∂L(xI , q, C)

∂q
q = 0, (A15)

∂L(xI , q, C)

∂C
C = 0, (A16)
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∂L(xI , q, C)

∂xI
xI = 0, (A17)

λ

{
ψI(q)− C

r
+ A1H(xI , q, C)

}
= 0. (A18)

Equation (A15) can be rewritten as follows:

{(1− θ)qνxI − I ′(q)q + β1(kA1 − A2)H(xI , q, C)}
(
x0
xI

)β2
+λ {ψI ′(q)q + β1A1H(xI , q, C)} = 0.

(A19)

Equation (A16) can be rewritten as follows:{
(θ − k)

C

r
− (β1 − 1)(kA1 − A2)H(xI , q, C)

}(
xI
x0

)β2
−λ
{
C

r
+ A1(β1 − 1)H(xI , q, C)

}
= 0.

(A20)

Equation (A17) can be rewritten as follows:{
(1− θ)qνxI −

β2
β2 − 1

(
I(q) +K − (θ − k)

C

r

)
+ (kA1 − A2)

β2 − β1
β2 − 1

H(xI , q, C)

}(
x0
xI

)β2
−

− λA1
β1

β2 − 1
H(xI , q, C) = 0.

(A21)

The sum of (A19) and (A20) yields:{
(1− θ)qνxI − I ′(q)q + (θ − k)

C

r
+ (kA1 − A2)H(xI , q, C)

}(
x0
xI

)β2
+ λ

{
ψI ′(q)q − C

r
+ A1H(xI , q, C)

}
= 0.

(A22)

Using (A9) and (A18), we can rewrite the above equation as follows:

{V (xI , q, C)− I ′(q)q − kψI(q)}
(
x0
xI

)β2
+ λψ {I ′(q)q − I(q)} = 0. (A23)

From (A21)− (A20)/(β2 − 1) we get:{
(1− θ)qνxI −

β2
β2 − 1

(I(q) +K) + (θ − k)
C

r
+ (kA1 − A2)H(xI , q, C)

}(
x0
xI

)β2
+

λ

β2 − 1

{
C

r
− A1H(xI , q, C)

}
= 0.

(A24)

Using (A9) and (A18), we can rewrite the above equation as follows:
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{
V (xI , q, C)− β2

β2 − 1
(I(q) +K)− kψI(q)

}(
x0
xI

)β2
+

λ

β2 − 1
ψI(q) = 0. (A25)

Subtracting (A23) from (A25) and rearranging terms, we obtain:(
1− λψ

(
xI
x0

)β2)(β2 − 1

β2
I ′(q)q − I(q)

)
= K. (A26)

When the �rm is �nancially constrained, we have λ > 0. Thus, in the presence of

lump-sum debt issuance costs K, the optimal investment decisions (in particular, the

optimal scale of investment) will be a�ected by �nancing decisions.11

Robustness check: costly equity issuance

Assume that �nancing by equity also involves proportional and lump-sum issuance costs,

which we denote ξ1 and ξ0 respectively. Then, the equity holders' maximization problem

takes the following form:

Supτ,q,C<∞ E
[
e−rτ (V (Xτ , q, C)− (1 + ξ1)I(q)− (k − ξ1)D(Xτ , q, C)− (K + ξ0))

]
s.t. D(Xτ , q, C) ≤ ψI(q)

(A27)

Performing the similar computations as in Appendix A.2, we can obtain:(
1 + ξ1 − λψ

(
xI
x0

)β2)(β2 − 1

β2
I ′(q)q − I(q)

)
= K + ξ0. (A28)

Thus, a �nancing structure will a�ect the optimal investment decisions in the presence

of lump-sum equity issuance costs.

11However, if K = 0, the debt neutrality on the investment scale established in Wong (2009) would
hold even under the variable debt issuance costs.
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7 Appendix B. Numerical simulations

We use the following parameter values: investors' discount factor r = 8%, the expected

growth rate of operating pro�t µ = 1%, operating pro�t volatility σ = 30%, the default

cost coe�cient γ = 0.3, the tax rate θ = 0.15, the investment function I(q) = 10+5q3. A

current value of the state variable is taken as X0 = 1. The optimal investment strategy

in the benchmark case (all-equity �nancing) is given by qe = 1.8566 and xeI = 4.2582.

B.1. Optimal investment and �nancing decisions when credit constraints are

not binding

Table 1.a displays simulation results for k = 0.1 and di�erent values of K0. Table

1.b displays the results obtained for K = 5 and di�erent values of k < θ. We denote F

the current value of the �rm investment option, whereas ρ = D(xI , q, C)/I(q) represents

the �rm's leverage ratio.

Table 1.a

k = 0.1

K qf xfI Cf I(qf ) D(xfI , q
f , Cf ) ρ F

0 1,8566 4,2282 2,1644 42 24,7629 0,5896 4,1613

1 1,9166 4,5056 2,3809 45,2 27,2392 0,6026 4,0885

2 1,9730 4,7746 2,5973 48,4 29,7155 0,6140 4,0232

3 2,0263 5,0363 2,8138 51,6 32,1917 0,6239 3,9640

4 2,0770 5,2914 3,0302 54,8 34,6680 0,6326 3,9100

5 2,1253 5,5405 3,2467 58 37,1443 0,6404 3,8603

Table 1.b

K = 5

k qf xfI Cf I(qf ) D(xfI , q
f , Cf ) ρ F

0 2,1253 5,3258 6,9924 58 70,8100 1,2209 4,1413

0,02 2,1253 5,3769 6,4445 58 66,5943 1,1482 4,0716

0,04 2,1253 5,4250 5,8118 58 61,3926 1,0585 4,0077

0,06 2,1253 5,4691 5,0799 58 54,9698 0,9478 3,9504

0,08 2,1253 5,5080 4,2318 58 47,0209 0,8107 3,9008

0,1 2,1253 5,5405 3,2467 58 37,1443 0,6404 3,8603

0,12 2,1253 5,5645 2,0987 58 24,8034 0,4276 3,8307

0,14 2,1253 5,5780 0,7563 58 9,26800 0,1598 3,8143
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B.2. Optimal investment and �nancing decisions when credit constraints are

binding

Table 2.a displays simulation results for ψ = 0.7, k = 0.1 and di�erent values of K.

Table 2.b displays the results obtained for ψ = 0.7, K = 5 and di�erent values of k < θ.

Table 2.c reports simulation results for K = 5, k = 0 and di�erent values of ψ ∈ [0, 1.5].

Table 2.a

ψ = 0.7, k = 0.1

K q xI C I(q) D(xI , q, C) F

0 1,8566 4,2507 2,6192 42 29,4003 4,1591

1 1,9161 4,5242 2,8097 45,1751 31,6225 4,0869

2 1,9723 4,7903 3,0011 48,3585 33,8510 4,0220

3 2,0254 5,0494 3,1928 51,5445 36,0812 3,9631

4 2,0760 5,3025 3,3852 54,7372 38,3161 3,9093

5 2,1243 5,5499 3,5778 57,9305 40,5514 3,8598

Table 2.b

ψ = 0.7, K = 5

k q xI C I(q) D(xI , q, C) F

0 2,1408 5,2565 3,6762 59,0559 41,3391 4,0640

0,02 2,1373 5,3151 3,6554 58,8190 41,1733 4,0212

0,04 2,1340 5,3737 3,6352 58,5892 41,0125 3,9795

0,06 2,1307 5,4323 3,6155 58,3642 40,8549 3,9387

0,08 2,1274 5,4911 3,5964 58,1443 40,7010 3,8988

0,1 2,1243 5,5499 3,5778 57,9305 40,5514 3,8598

0,12 2,1212 5,6087 3,5599 57,7229 40,4061 3,8217

0,14 2,1182 5,6676 3,5423 57,5193 40,2635 3,7844
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Table 2.c

k = 0, K = 5

ψ q xI C I(q) D(xI , q, C) F

0 1,8566 4,2582 42 0,7387

0,1 2,1287 5,5165 0,4717 58,2309 5,8231 3,8527

0,2 2,1319 5,4576 0,9595 58,4466 11,6893 3,8924

0,3 2,1348 5,4041 1,4646 58,6451 17,5935 3,9309

0,4 2,1372 5,3561 1,9881 58,8124 23,525 3,9678

0,5 2,1391 5,3147 2,5308 58,9418 29,4709 4,0026

0,6 2,1404 5,2811 3,0934 59,026 35,4156 4,0349

0,7 2,1408 5,2565 3,6763 59,0561 41,3393 4,064

0,8 2,1403 5,2421 4,2789 59,021 47,2168 4,0893

0,9 2,1387 5,2393 4,9003 58,9125 53,0213 4,1103

1 2,1359 5,2497 5,5386 58,7221 58,7221 4,1263

1,1 2,1319 5,2747 6,1908 58,4464 64,2911 4,1367

1,2 2,1266 5,3152 6,8533 58,0852 69,7023 4,1412

1,3 2,1201 5,3723 7,5218 57,6454 74,939 4,1393

1,4 2,1125 5,4463 8,1921 57,1374 79,9923 4,1311

1,5 2,1041 5,5368 8,8602 56,5764 84,8646 4,1165
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