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Abstract

In this paper we define and discuss an equilibrium selection crite-
rion which we call coalitional stochastic stability. This differs from the
existing work on stochastic stability in that profitable coalitional de-
viations are given greater importance than unprofitable single player
deviations. Coalitionally stochastically stable states are shown to ex-
ist and an intuitive and simple method is given for finding them. This
method is shown to give a simple lexicographic ranking of efficiency
and risk-dominance for 2-player games. Coalitional stochastic stability
is also shown to select more plausible equilibria in games of contract-
ing than standard uniform error models of stochastic stability. Our
approach also provides a novel justification for interpretations of ran-
dom errors as experimentation which currently exist in the literature.
We also discuss how one of the problems affecting stochastic stability
methods - large expected time to convergence to stable states - can be
mitigated using a coalitional approach. Finally, this paper is related
to work on the noncooperative foundations of cooperative game the-
ory and raises challenges to cooperative equilibrium concepts from an
evolutionary perspective.
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1 Introduction

In his seminal paper in evolutionary game theory Young (1993) introduces
the idea of stochastic stability : a method of equilibrium selection in settings
featuring adaptive learning. Players repeatedly play an n player game Γ.
Players follow a process whereby they play best responses to a distribution
over the actions played by the other players, where the distribution is de-
termined by sampling s actions from the previous m actions played by the
other players. This defines a Markov process where the states of the process
are defined by the actions taken by each of the players in the previous m
periods. If s is small enough relative to m and the game is weakly acyclic the
game converges almost surely to a convention where each player has played
a strategy from a pure strategy Nash equilibrium of Γ for as long as anybody
can remember. Young introduces random shocks to the system which can
be interpreted as random mistakes made by players in implementing their
strategies. As long as there is a positive probability of every combination
of strategies being played by mistake the perturbed system then defines an
aperiodic and irreducible Markov process. Young shows that as the probabil-
ity of a random shock ǫ approaches zero, the system spends almost all of its
time in a subset of the conventions of the games. He calls such conventions
stochastically stable.

Here I argue that stochastic stability can lead to unrealistic results in
games where coalitional behaviour can be expected by players. Furthermore I
define coalitional stochastic stability which I claim can lead to a more realistic
equilibrium selection in certain settings, particularly in games with more than
2 players.

2 Related literature

There are two strands of literature which this paper bridges. Below I give a
brief summary of both of them followed by a description of the motivation
and contribution of this paper.

2.1 Coalitional behaviour

There exists a gigantic literature in cooperative game theory on the behaviour
of coalitions. For a survey the reader is referred to Peleg & Sudholter (2003).
Aumann (1959) gives the concept of a ‘strong equilibrium’ - an equilibrium
where no subset of players would want agree to change their profile of strate-
gies to another profile, holding the strategies of all players not in that subset
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fixed. This equilibrium concept can be argued to correspond to situations
where coordination between any subset of players is possible without play-
ers outside the subset being aware of it. As the name suggests this is a
very strong equilibrium notion and often will not exist. The concept can be
weakened to that of k-strong equilibrium where only coalitions of size k or
lower have to have their incentive constraints satisfied but still existence is
not guaranteed 1. Bernheim et al. (1987) attempt to address the issue of
robustness to coalitional deviations through their concept of coalition proof
equilibrium, the idea of which is that equilibria need to be robust to a set
of players deviating only if that set of players is itself robust to any further
deviations by subsets of its constituent players. Bernheim et al. argue that
this equilibrium concept can be understood intuitively to lead to outcomes
which could be reached if all players seated in a room reached an agreement,
following which the players leave the room one by one, and no matter in
what order they leave the room there will never be a subset of players re-
maining in the room who would agree to play differently to what was agreed
with all players present. Konishi & Ray (2003) look at the issue of coalition
formation in a dynamic setting with farsighted agents, showing that if char-
acteristic functions are incorporated into the rules governing the dynamic
process then they can choose such a process which always selects payoffs in
the core of the underlying game if the core is a singleton.

2.2 Stochastic stability

Young (1993) and Kandori et al. (1993) introduce the idea that although
there may be several stationary states in a dynamic process, some of them
may be more robust to ‘random errors’ in strategies chosen than others, and
that if the probability of a random error in the very long run becomes very
small, then the state which is most robust to such errors will be observed
almost all of the time. Young (1993) predicts that in 2x2 games when there
are two strict Nash equilibria then the risk dominant equilibrium will be se-
lected. It has been noted by Ellison (1993) that the time taken for random
errors to cause a switch between stationary states of the underlying process
can be incredibly long, although Ellison (2000) and Naidu & Bowles (2005)
note that if movement between states of the underlying process primarily
takes place between states which are ‘close’ to one another then the time
required for switches can be lower. Bergin & Lipman (1996) prove a kind of
folk theorem for stochastic stability, that is they show that any stable state of
the unperturbed dynamic process can be selected with appropriately chosen

1Nash equilibrium is a special case of k-strong equilibrium where k=1
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state-dependent mutation rates. van Damme & Weibull (2002) recover some
of the predictive power of the theory by assuming that not making mistakes
is costly to players. They endogenize the random error probabilities so that
players will pay more to avoid making mistakes when it is more costly to
them and give conditions under which random errors between players and
for a given player in different states remain of the same order of magnitude as
limits are taken. They show that under these conditions the results of Young
are recovered. Young (1998a) shows that under his uniform error stochas-
tic stability process there is a preference for fairness in contracts agreed to
between two players and that the contract selected corresponds to the Kalai-
Smorodinsky bargaining solution. Naidu & Bowles (2005) analyse a model
of contracting where movement from one Pareto efficient contract to another
is only caused by errors on the part of the player who stands to gain from
the move. They justify this by invoking a level of foresight on the part of
the agents, who know that there is a better contract available and thus ‘in-
tentionally’ make mistakes so as to lead to a better conventional contract for
themselves.

2.3 Motivation and contribution of this paper

2.3.1 Individual rationality

Much has been written on equilibrium selection by perturbing the ‘ratio-
nality’ part of ‘individual rationality’. Hardly anything has been written
regarding perturbing the ‘individual’ part. It is not unreasonable to expect
that players may occasionally take irrational actions, but neither is it un-
reasonable to think that from time to time players may meet and agree to
jointly coordinate their actions. It is also clear that if people are irrational
then their level of irrationality will be bounded away from zero. However, it
is still interesting to analyse what happens in the limit. I would argue like-
wise with coalitional behaviour, which is to individualism what irrationality
is to rationality.

2.3.2 Why model coalitional behaviour as rare?

It is one thing to analyse the behaviour of a dynamic where coalitional be-
haviour is possible. It is another thing to analyse the predictions of a model
where coalitional behaviour becomes infinitesimally likely in the limit. Aside
from the pure academic interest as described above here are two reasons why
we should be interested. Firstly, people deal with a lot of games in their
everyday lives and the amount of time they devote to any given one is by
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necessity limited. It is not unreasonable to think that it is quite a rare event
that two or more people get together and discuss any particular aspect of
their lives and credibly agree to make the necessary changes in strategy to
better their outcomes. It is also not unreasonable to think that the more peo-
ple required to agree to changes in behaviour, the harder these changes are
to accomplish. Secondly, for our results of this paper it is not necessary that
individual strategic switching occur with positive probability in the limit,
merely that it is much more likely than coalitional strategic switching. Thus,
any type of strategic change can be viewed as a rare event, an assumption
which is not unreasonable given the stasis observed in people’s behaviour in
the overwhelming bulk of the aspects of their lives.

2.3.3 CSS justifies ‘experimentation’

As described above, several models have attempted to model random devi-
ations as ‘experimentation’ by players. The problem here is that such ex-
perimentation by a single player is always going to damage the payoff of the
experimenting player in the short term. To deal with this, justifications for
experimentation have to endow the players with some amount of foresight,
for example by suggesting that players will be more likely to experiment
when at states which give them relatively poor payoffs because they feel that
there must be something better out there. Such justifications sit uneasily
will the myopic nature of the rest of the adaptive learning process. CSS
however, easily justifies interpretations of deviations as experimentation, as
experimenting players can achieve higher payoffs by participating in a coali-
tional deviation. CSS can thus incorporate the idea of experimentation into
stochastic stability notions without departing from the myopia of standard
adaptive processes.

2.3.4 CSS can significantly lower convergence times

One of the problems with stochastic stability 2 is the incredibly long times it
can take to move between stationary states of the unperturbed process. The
reason for this is that players typically need to make several mistakes to push
the process from one state to another, the probability of each random error
occuring is very small, and the probability of several random errors occuring
is much smaller still. Moreover, it is frequently the case that several mistakes
need to be made by a single player (or class of players) to push the system
to another state. this requires a player to make an error which damages his
payoff then continue to make that error several times. With CSS however, we

2See for example Ellison (1993)

5



have every reason to believe that a profitable joint deviating strategy will be
continued in future periods. If a coalition of players have tried something and
it works, then why not try it again? This paper will show how persistence of
profitable coalitional deviations can lead to a considerable reduction in time
taken to move between different states of the dynamic process, thus dealing
with one of the most important challenges which faces stochastic stability
notions.

2.3.5 Realistic modeling of social change

The combination of myopic behaviour with the assumption that coalitional
behaviour is more likely to take place with smaller coalitions of players than
with larger coalitions can be used to explain aspects of social change. It gives
an explanation, for instance, of why revolutionary social movements (large
coalitional deviations) will typically have a short life span before breaking
down (small coalitional deviations) into something other than what was orig-
inally intended.

3 Basic model

This paper shall follow closely the methods and examples of Young (1993).3

Take an n-player game with finite strategy sets X1, . . . , Xn; X =
∏

Xi; and
payoffs given by ui : X → R. The action taken by player i at time t is
denoted xt

i. The action profile played at time t is denoted xt = (xt
1, . . . , x

t
n).

The state of the system is given by the actions played in the last m periods
and is denoted ht = (xt−m+1, . . . , xt). The higher the value of m the longer
the memory of the players. Xm denotes the set of all possible states. The
system is taken to start at an arbitrary state: it is assumed at least t periods
have already elapsed since the beginning of time.

We define a Markov process P 0 on Xm as follows:

• From state ht player i draws a random sample of s actions out of the
previous m actions taken by each of the other players. These n −
1 samples are drawn independently. The sample distribution of j’s
actions in i’s sample is denoted p̂t

ij and we write
∏

j 6=i p̂
t
ij = p̂t

−i

• Player i plays a best response to p̂t
−i. If there exist tied best responses

they are played with equal probability. The actions all players take
define xt+1 and thus the next state ht+1.

3See also Young (1998a), Young (1998b).
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Young defines a perturbed version of the process P ǫ where with proba-
bility 1 − ǫ a player plays a best response as per P 0. With probability ǫ he
instead makes an ‘error’ and plays a random action from a distribution with
full support over his possible actions.

4 Motivating example

In his paper dealing with conventional contracts Young (1998a) gives the
example of The Marriage Game.4 In this game a woman and a man have the
option of taking control (TC), sharing control (SC) or ceding control (CC).

Women

Men
TC SC CC

TC 0, 0 0, 0 5, 1
SC 0, 0 3, 3 0, 0
CC 1, 5 0, 0 0, 0

Young (1998b) shows that the stochastically stable outcome of this game
when the sample size is sufficiently large is for men and women to share
control. The reason for this is that “conventions with extreme payoff impli-
cations are relatively easy to dislodge” because one of the players is “dissat-
isfied compared to what they could get under some other arrangement”. It
does not take many stochastic shocks to create an environment in which they
prefer to try something different.

Here I expand the marriage game to include more than 2 players. Specif-
ically I look at a version of the game where there is one man and n women
playing the game. The man receives his coordination payoff as long as at
least one woman coordinates with him. If more than one woman correctly
coordinates with the man, each woman to do so “marries” (i.e. receives her
coordination payoffs) with equal probability. Players have the same actions
available as in the game above. Payoffs are specifically:

πM(TC) =

{

5, if at least one woman plays CC
0, otherwise

πM (SC) =

{

3, if at least one woman plays SC
0, otherwise

4Note that this is not a particularly esoteric example and can be used to model a number
of situations where two agents have to agree on a contract. Instead of a man and a woman
in the example we could have a real estate company and a building contractor, with payoffs
representing the share of each party’s surplus generated by the agreed contract.
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πM (CC) =

{

1, if at least one woman plays TC
0, otherwise

In the following expressions d is the number of women who play the same
action as the woman whose payoff is in question (inclusive).

πW (TC) =

{

5/d, if the man plays CC
0, otherwise

πW (SC) =

{

3/d, if the man plays SC
0, otherwise

πW (CC) =

{

1/d, if the man plays TC
0, otherwise

In Young (1998b) stochastically stable states are found by computing the
resistances between recurrence classes. These are defined as the smallest
number of stochastic shocks required to move from one recurrence class to
another. Figure 1 shows what Young calls the reduced resistances of the 2-
player marriage game. These are the resistances divided by the sample size
s.

Young also defines a concept called stochastic potential. If each recurrence
class of the process is drawn as a vertex on a graph, then for a given recurrence
class i we can draw a spanning tree such that from every other recurrence
class j 6= i there is a unique path from j to i. The resistances of the edges of
this graph can be summed. The stochastic potential of recurrence class i is
then defined as the minimum of these sums across all possible spanning trees.
The stochastically stable recurrence classes are then shown in Theorem 2 of
Young (1993) to be the classes with the lowest stochastic potential.

We wish to calculate the resistances in the n-woman marriage game.
There are 3 absorbing states in the n-woman marriage game. I shall call
these |, … and ~ representing male, shared and female control respec-
tively (eg. In | the man plays TC and all the women play CC). There are
basically two types of possible transition here: those with M’s payoff increas-
ing and those with M’s payoff decreasing. Here we examine one instance of
each (from which follows the general result).

4.1 M’s payoff increasing

Transition: ~→ |
Firstly we ask how many times women must mutate for this transition

to take place. Say one woman out of the n women undergoes mutations.
We call r the number of mutations necessary for the transition to take place
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| …

~

1

6

1

4

1

6

3

8
1

4

3

8

Figure 1: Reduced resistances for 2 player marriage game

with no further mutations. This is the number of mutations required for M
to think it worthwhile to play TC after sampling the actions of the women.
We examine M’s expected payoffs when he samples r plays of CC from the
woman in question (the other women do not mutate and continue to play
TC.

E[πM(CC)] = 1

E[πM(TC)] = 5
r

s

Hence M might switch from CC to TC when

r ≥ s
1

5

In this way we find candidates for reduced resistances:

Transition rr ?
~→ | 1

5

~→ … 1

3

…→ | 3

5

But now we have to ask if such a transition could instead be caused by
rational behaviour by the women. This is never the case in the two player
marriage game for transitions that improve M’s payoff, but can be the case
for the n-woman game as there is a first mover advantage in that if a woman
guesses correctly the action of the man and the other women fail to do so a
higher relative payoff ensues as it is not shared with the other women.
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So say the man has suffered r mutations from CC to TC. Then if the
women sample all of these mutations then:

E[πW (TC)] =
5(s − r)

ns

E[πW (CC)] =
1r

s

Hence W might switch from TC to CC when

r ≥ s
5

n + 5

The transition of M to TC can follow without any further mutations.
In this way we find further candidates for reduced resistances:

Transition rr ?
~→ | 5

n+5

~→ … 5

3n+5

…→ | 3

n+3

We conclude that reduced resistances for the following transitions are:

Transition rr

~→ | min(1

5
, 5

n+5
)

~→ … min(1

3
, 5

3n+5
)

…→ | min(3

5
, 3

n+3
)

4.2 M’s payoff decreasing

Here we need only examine transitions of the type where M mutates and W
react rationally to this mutation. Following an identical procedure to the
second part of the subsection immediately preceding we obtain the following
reduced resistances:

Transition rr

|→ ~ 1

5n+1

|→ … 1

3n+1

…→ ~ 3

5n+3

So we have obtained resistances for every possible transition in our n-
woman marriage game.

It is apparent from the diagram and the argument above that there are
two effects which make the n-woman marriage game different to the 2-player
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| …

~

min(1

5
, 5

n+5
)

1

3n+1

1

5n+1

3

5n+3

min(1

3
, 5

3n+5
)

min(3

5
, 3

n+3
)

Figure 2: Reduced resistances for n-woman marriage game

marriage game. The first effect is that even when one woman has mutated
away from the current convention, there are still sometimes women who re-
main playing that convention. This increases the expected payoffs to M from
sticking with the existing convention and makes the resistances of transitions
which are payoff improving for M higher than in the 2-player game. The sec-
ond effect is that lower payoffs for the women in the n-woman marriage game
lead to a greater willingness of individual women to experiment with different
actions when they observe behaviour by M that is not in keeping with the
current convention. For big enough n this effect will come to dominate the
first effect for transitions which improve M’s payoffs. However, the second
effect is greater for transitions which decrease M’s payoffs. The result is that
as n increases we would expect to see stochastic stability select conventions
which give M lower payoffs. This is counterintuitive: it would seem to be
a reasonable real world assumption that increased numbers of women in the
marriage market would lead to greater market power for M and allow him to
extract higher payoffs.

5 Aye, there’s the rub

Results like this continue to occur even when the number of contracts avail-
able to the man and the women increase markedly (eg. to sharing 100 units
in integer increments). I assert that one of the reasons these strange re-
sults occur is because of the probabilities given to given mutation patterns
in each period. Within the framework of Young (1993) payoff improving de-
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viations by a single player have a high probability of being realized. Payoff
decreasing deviations by a single player have a probability of order ǫ of being
realized. Deviations by two players such that either deviation on its own
would be detrimental to the deviator’s payoff have a probability of order ǫ2

of being realized, whether or not the deviations taken together offer a pareto
improvement to the deviators. Thus as ǫ → 0, joint deviations by two play-
ers which offer payoff improvements become infinitely unlikely compared to
unprofitable deviations by a single player. This is clearly not satisfactory for
all situations, especially situations where coalitional behaviour by groups of
players is likely.

Consider the 3-woman marriage game if the situation were reversed, with
profitable two player joint mutations occuring with probability of order ǫ
and unprofitable single player mutations occuring with probability of order
ǫ2. This effectively doubles the resistances for all the transitions where the
payoff of the man decreases and the unique stochastically stable equilibrium
in this case as ǫ → 0 is then …. If we make random errors even more unlikely
than joint mutations by increasing the power of epsilon we eventually get
|as the unique stochastically stable state. That is, where rational coalitional
behaviour is given sufficient priority over irrational single player deviations,
the market power given to the man by there being more than one woman
in the market is sufficient to take him to his favoured equilibrium (nb. In
the above game this happens by a kind of Bertrand argument whereby if
the man is not at his optimal contract the man and a woman deviate to a
contract where they both do better in the short run and the other women
follow so as to earn non-zero payoffs). It is also possible in some games
that equilibrium selection can be altered by giving both of the above types
of deviation probabilities of the same order (although it doesn’t affect the
equilibrium chosen in the game above). It should also be noted that in the
formulation of Young (1998a) it is always the players who stand to lose from
a change of contract who induce the change through their making random
errors. Naidu & Bowles (2005) address this by modelling ‘experimentation’
as a restriction which only allows changes in conventional contracts to be
induced by random errors on the part of those who stand to gain from the
change. We achieve the same without altering the myopic nature of the model
by allowing both parties to gain in the short term from a joint deviation.

6 Coalitional stochastic stability

In this section we introduce our concept of coalitional stochastic stability.
Like standard stochastic stability it is a concept based on limits and as
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such shares the benefits of its sharp predictive precision. It also shares the
drawback of relying on the the fact that the perturbations in question, -
irrationality for SS, coalitional behaviour for CSS - disappear in the limit.
However there are some important properties of CSS that SS does not share:

• CSS does not rely on payoff destructive behaviour by agents to gain
sharp predictions.

• Versions of CSS can lead to much faster switching between absorbing
states of the underlying unperturbed dynamic (discussed in detail later
on in the paper).

It should be noted that the version of CSS below does include random errors
as a technical tool to ensure irreducibility of the Markov process. There are
many games where this will make no difference to predictions, and where it
does, CSS without random errors will give sharp predictions for large classes
of states - precisely those classes of states which are closed under rational
coalitional behaviour.

First define the following notation.

P is the set of all subsets of N .

Pm ⊂ P is the set of all subsets Pm of N such that |Pm| = m.

Let Fm be a probability distribution over Pm with full support.

Given an action profile a and a set Q ⊂ N , let

AQ(a) = {x : xi = ai ∀i /∈ Q, πi(x) ≥ πi(a) ∀i ∈ Q}.

Let G(AQ(a)) define a probability distribution over AQ(a) with full
support.

Let Ĥ be a probability distribution with full support over N and let
Hi be distributions with full support over all possible actions of player
i.

Consider the following perturbed adaptive process P ǫ with ǫi > 0 ∀i

• With probability 1−
∑n+1

i=2
ǫi players follow the adaptive learning pro-

cess as usual.
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• With probability ǫm there is a Pareto superior deviation by 1 < m ≤ n
players. To be precise, a set of players Pm is selected according to Fm.
Actions remain fixed at those of the last period for all i ∈ N\Pm. The
actions of i ∈ Pm change so that payoffs for these players are weakly
better under the new action profile than under the old one: given that
an action profile xt−1 was played in the previous period, a new action
profile xt is selected from the distribution G(APm

(xt−1)) and played in
the current period.

• With probability ǫn+1 a random error occurs to the strategy of a ran-
domly selected player. A player is selected according to Ĥ and he plays
an action determined by Hi. The actions of all other players remain
the same as in the previous period.

As the process is irreducible it has a unique stationary distribution which
I denote (à la Young (1998b)) as µǫ. A state z is coalitionally stochastically
stable if:

lim
ǫ2→0

lim
ǫ3→0

lim
ǫ4→0

. . . lim
ǫn→0

lim
ǫn+1→0

µǫ(z) > 0.

6.1 What does this mean?

Effectively I have ranked the different types of deviations in order of impor-
tance. Most important are profitable single player deviations, followed by
profitable two player deviations and so on. Least important of all are ran-
dom unprofitable deviations. This order of importance is given by the order
in which limits are taken. In working out our CSS states we take in turn:

• Any type of rational coalitional deviation to be infinitely more likely
than unprofitable deviations.

• Rational coalitional deviations involving fewer players to be infinitely
more likely than rational coalitional deviations involving more players.

So it is apparent that this concept puts a high value on rationality relative
to the approach of Young (1993). Conversely it puts lower emphasis on the
independence of the players’ actions.

7 Propositions

Proposition 1. 5 CSS states exist and are identical to those selected by the
following process:

5See appendix for proof of propositions 1 and 2.
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• Take the recurrence classes defined by the rational coalitional devia-
tions. Find the recurrence class(es) with the lowest stochastic potential
with respect to random unprofitable deviations (i.e. those with proba-
bility of order ǫn+1.

• Within this recurrence class(es) take the recurrence classes defined by
the rational coalitional deviations of order n − 1 or less. Find which
of these have the lowest stochastic potential with respect to coalitional
deviations of order n (i.e. those with probability of order ǫn. Select
these recurrence classes.

• Repeat with classes of order n − 2 and deviations of order n − 1

• Keep going until you have selected recurrence classes of order 1.

• These are the coalitionally stochastic states of the underlying game.
They comprise a subset of the recurrence classes of the process P 0 and,
if singletons, are Nash Equilibria of the underlying game.

Proposition 2. Under conditions which in Young (1993) guarantee the se-
lection of a convention(s) by SS, CSS will also select a convention(s). These
conditions are:

• The underlying game Γ is weakly acyclic.

• The sample size s is sufficiently small relative to m.

8 Example

L M N O R
a 6, 2 4, 1 30, 0 0, ǫ 0, ǫ
b 1, 8 3, 7 0, 0 0, ǫ 0, ǫ
c 0, ǫ 0, ǫ 0, 0 7, 3 1, 5
d 0, ǫ 0, ǫ 0, 0 8, 1 2, 6

Figure 3: A two player strategic game.

Here we demonstrate how the algorithm in Proposition 2 works. ǫ is
assumed to be very close to zero and is included so that action N is strictly
dominated for player 2. The 4x5 game in Figure 3 has 2 strict Nash equilibria,
aL and dR, each of which corresponds to a convention of our unperturbed
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dynamic. Under the standard random errors approach, convention aL will
then be selected as it takes relatively few errors by player 2 where he chooses
N (a strictly dominated action for him) before it becomes worthwile for player
1 to play a in the hope of earning a very big payoff at aN . Once a is being
played by player 1 it then becomes a best response for player two to play L
and the convention aL is reached. Under CSS it is clear that there is only
one recurrence class under coalitional deviations of 2 players or fewer (i.e.
those occuring with probabilities of order ≥ ǫ2) and that this recurrence class
includes both conventions: from convention dR enough two player deviations
to bM will allow aL to be reached, and from convention aL enough two
player deviations to cO will allow dR to be reached. As there exists only
one recurrence class under coalitional deviations of 2 players or fewer there
is no need to use random errors to choose between such recurrence classes.
Within this recurrence class there are two recurrence classes under coalitional
deviations of 1 player or fewer (i.e. those occuring with probabilities of order
1) and these recurrence classes are the conventions aL and dR. We now
use deviations of order 2 to choose between these conventions. From dR the
only possible two player coalitional deviation is to bM and s

3
of these are

required before it is possible that player 1 sampling from player 2’s actions
sees player two playing M often enough for player 1 to judge it worth his
while to play a. If player 1 the plays a for a while, player 2 can begin to play
L and aL is reached. On the other hand, to move from aL to dR via plays
of cO requires only 2s

7
joint deviations before player 2 can switch to playing

R followed by player 1 switching to d. So our algorithm selects dR as the
unique coalitionally stochastically stable convention.

We have chosen between two conventions without either player engaging
in behaviour that is detrimental to his short term myopic best interest. Ir-
rational behaviour is not always necessary in order for stochastic stability
arguments to have bite.

9 2×2 Games

Two player games are a special case when it comes to examining coalitional
behaviour because any coalitional move in a 2 player game is by definition a
move towards efficiency. In fact, where Γ is a 2 player normal form game with
multiple strict Nash Equilibria CSS will never select an equilibrium which is
not Pareto efficient. If the game also satisfies the conditions of Proposition
2 then CSS effectively eliminates the possibility of the selection of inefficient
equilibria and allows a standard stochastic stability notion to choose between
the remaining (efficient) equilibria. This leads to the following result.
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Proposition 3. When Γ is a 2×2 game with more than a single strict Nash
Equilibrium, CSS induces the following lexicographic decision rule:

(i) Where one equilibrium is Pareto superior to the other, the superior
equilibrium is selected.

(ii) Where neither equilibrium is Pareto superior to the other, the risk dom-
inant equilibrium is selected.

Proof. A 2 × 2 game with two strict NE is clearly weakly acyclic, so Propo-
sition 2 is satisfied and a convention will be chosen. If one equilibrium is
Pareto superior to the other it is the unique recurrence class of P ǫ≤2 and so
is selected by CSS. If neither NE is Pareto superior to the other both of them
are singleton recurrence classes in P ǫ≤2. Clearly whichever of them is selected
by the random errors of order ǫ3 will be the selected convention. Effectively
we are selecting our CSS states only using the random errors and the se-
lection is reduced to the standard stochastic stability notion which Young
(1993) shows selects the risk dominant equilibrium in 2 × 2 games.

It should be noted that although the elimination of inefficient equilibria
extends to 2-player games with more than 2 strategies per player, the risk
dominance part of the result does not. I also note that this efficiency guar-
antees that the selected NE is coalition proof and part of the core of Γ. The
question naturally arises as to how far we can extend our results regarding
this preference of CSS for efficiency.

10 Efficiency with >2 players

In the example of the n-woman marriage game the selected equilibrium payoff
vector is

(

5, 1

n
, . . . , 1

n

)

. This is an element of the core of the game, defined as
in Aumann & Peleg (1960), whether the core for games with non-transferable
utility is described using the concept of α-efficiency or β-efficiency.6 It is a
well known property of the core that its elements are efficient outcomes of the
underlying game. Can we establish any kind of inclusion relation between
CSS and the core? The answer is no, we cannot. Even when CSS selects a
unique equilibrium we cannot guarantee that this equilibrium is contained
in the core of the game. This result is in contrast to Konishi & Ray (2003)

6α-efficiency guarantees coalitions payoffs at least as high as their maximin payoffs,
β-efficiency guarantees coalitions payoffs at least as high as their minimax payoffs. The
core under α-efficiency is the set {

(

5, 1

n
, . . . , 1

n

)

,
(

3, 3

n
, . . . , 3

n

)

,
(

1, 5

n
, . . . , 5

n

)

}; the core

under β-efficiency is {
(

5, 1

n
, . . . , 1

n

)

}.}
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where a farsighted dynamic process always selects payoffs in the core of the
game when a unique limit of the process exists.7 Serrano & Volij (2005)
demonstrate that stochastic stability does not necessarily select equilibria in
the core.8 Here I give an example of a game with a nonempty singleton core
and a singleton CSS set which are not the same.

L R
a 4, 4, 4 2, 0, 6
b 0, 6, 2 5, 5, 0

A

L R
a 6, 2, 0 0, 1, 5
b 5, 0, 1 3, 3, 3

B

Figure 4: A three player strategic game, in which player 3 chooses A or B.

In the game in Figure 4 the the unique element of the core is aLA with
payoffs

(

4, 4, 4
)

. CSS chooses bRB - the only inefficient pure strategy com-
bination possible! The reason for this is that it requires a 3-player coalition
to move from bRB to aLA, whereas a 2-player coalition will deviate from
aLA to bRA from where a best response of player 3 is to move to bRB (all
usual provisos about sample sizes in the adaptive process apply).

10.1 Coalition proofness

Nor is there an inclusion relation between CSS outcomes and Coalition Proof
outcomes Bernheim et al. (1987). The game in Figure 4 has bRB as its
unique CSS outcome and aLA as its unique Coalition Proof outcome.

aLA is coalition proof as all coalitional deviations lead to further devia-
tions by subsets of the deviating players.9 bRB is not coalition proof as the
players can jointly deviate to aLA which is itself coalition proof. However,
although a deviation from the Coalition Proof equilibrium aLA to bRA is
disturbed by further deviations, it still allows the possibility of a transition
to bRB by single player best responses. Thus, coalitions that are not viable
deviations in the Coalition Proof equilibrium concept can change outcomes in
the CSS concept if they open up opportunities to enter the basin of attraction
of another equilibrium.

7However, the restrictions Konishi & Ray (2003) place on the dynamic processes in
their paper are extremely restrictive and incorporate characteristic functions directly into
their definitions.

8This is clearly true for games with non-transferable utility. There is however more rea-
son to suspect that CSS and the core might be related, both being defined using coalitional
concepts.

9Deviation to bRA leads to deviation to bLA.
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11 Structure of coalitional deviations

In my definition of CSS I assume that all possible coalitions have the chance
to deviate. This can easily be altered to model situations where certain
players are not expected to cooperate with one another. An example of this
might be a game with a set of buyers and a set of sellers, where sets of sellers
can make coalitional deviations (modelling collusive behaviour) but no other
set of players can. We can in fact define any hierarchy of subsets of players
ordered by the likelihood of the occurence of coalitional behaviour in them
and thus by the order in which limits will be taken to select CSS states:

ξ1, ξ2....., ξM , M ∈ N, ξi ⊂ P ∀i

Naturally, some coalition structures can be considered more reasonable than
others. Suggestions have been made in the cooperative game theory litera-
ture that subsets of coalitions which are allowed to deviate should also be
allowed to deviate10 11 or alternatively that the union of coalitions which are
allowed to deviate and have a nonempty intersection should also be allowed
to deviate12. In the first case it is argued that it is possible for subset of a set
of players who meet to discuss strategy to meet without the others present.
The second case is predicated on the argument that players who are mem-
bers of the intersection between two coalitions can serve as intermediaries to
bring the interests of the two coalitions together.

12 Further examples

12.1 Bertrand game with discrete pricing

It is well known that a Bertrand game with two firms each with unit cost
of production c who can set prices in integer increments has multiple Nash
equilibria. Assuming that if each firm sets the same price they share the
market equally then there is an equilibrium where each firm charges c, an
equilibrium where each firm charges c + 1, and an equilibrium where each
firm charges c + 2. We assume a dynamic as per our model with s = m = 1.
From any of the equilibria it is of benefit to both firms to jointly deviate

10Of course the argument is not phrased in this manner in cooperative papers. Instead
the structure of allowable deviations in cooperative games is described by the set of char-
acteristic function inequalities that need to be satisfied in order for a game to be counted
as part of the core of the game or to satisfy another cooperative solution concept such as
the nucleolus (Schmeidler (1969))

11Algaba et al. (2000)
12Algaba et al. (1999)

19



to charging some higher price c + x with x > 2. However, then under our
dynamic (which with s = m = 1 is a simple best response dynamic) the firms
then attempt to undercut one another until the equilibrium where they both
charge c + 2 is attained. However at this equilibrium the best responses are
not unique and charging c + 1 when the other firm is charging c + 2 is also a
best response. So the dynamic will also eventually take us to the equilibrium
where both firms charge c+1. Notice that as long as both firms are charging
at least c + 1 then charging a price of c or lower is never a best response.
This means that the equilibrium where both firms play c is eliminated from
the recurrence class of states under deviations of two players or fewer. Then
letting the probability of two player deviations become infinitesimally small
we see that the probability of leaving the equilibrium where both firms charge
c + 1 goes to zero, whereas to get to this state from the other states does
not require joint deviations. Hence both firms charging c + 1 is the unique
coalitionally stochastically stable state.

13 More on 2×2 games

To use the ideas behind CSS, it is not even necessary to use the lexicographic
tool of ordered limits. Here I examine the special case of 2 × 2 games when
the probability of coalitional deviation and the probability of random error
deviation are closely related. That is, we take there to be an ǫ probability of a
random error occuring and a ǫλ probability of a 2-player coalitional deviation
occuring, where λ > 0. This examination is only going to be interesting when
there is some tension between efficiency and risk dominance so we examine
games with one efficient strict NE and one risk dominant NE.

Player 1

Player 2
1 2

1 a11, b11 a12, b12

2 a21, b21 a22, b22

We assume without loss of generality that (1,1) and (2,2) are strict NE
and that (1,1) is Pareto superior:

a11 > a22 , b11 ≥ b22

We also assume that (2,2) is the risk dominant equilibrium:

(a22 − a12)(b22 − b12) > (a11 − a21)(b11 − b21)
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Proposition 4. In a 2×2 game with 2 strict NE, one efficient and one risk
dominant, the efficient equilibrium is selected if and only if:

λ ≤ min{
β

1 − α
,

α

1 − β
}

with

α =
(a11 − a21)

(a11 − a12 − a21 + a22)
, β =

(b11 − b12)

(b11 − b12 − b21 + b22)

Proof. Resistances measured in terms of necessary deviations of probability
ǫ are:

rs
12 = min{⌈αs⌉, ⌈βs⌉}

and13

rs
21 = min{⌈(1 − α)s⌉, ⌈(1 − β)s⌉, λ⌈(1 − α)s⌉, λ⌈(1 − β)s⌉}

Equilibrium (1, 1) is selected when rs
12 > rs

21. For s large enough (so that
we can ignore the ⌈·⌉ operators), this gives us the condition stated in the
proposition.

14 Experimentation

It is mentioned above that CSS gives added weight to the explanation of the
small probability events underlying SS as experimentation. When there is
a tiny chance (the chance that another player simultaneously randomly ex-
periments) of ‘experimentation’ leading to increased payoffs it seems a funny
kind of behaviour for players to engage in. For this reason, justifications
usually involve arguments that depart from the myopia of standard adaptive
learning. However, with coalitional behaviour it becomes possible for there
to be a non-negligible possibility of ‘experimentation’ resulting in increased
payoffs for the players concerned. For completeness we outline a slightly
different model to our one above which better fits this interpretation.

Consider the following perturbed adaptive process Eǫ with ǫi > 0 ∀i

• There is an action profile being played at the start of the period.

13This is simply the equivalent expression without coalitional deviations min{⌈(1 −
α)s⌉, ⌈(1−β)s⌉ with adjustments made for the case when it is easier to shift via coalitional
deviations to (1, 1) rather than via error deviations.
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• With probability 1 −
∑n+1

i=1
ǫi nothing happens.

• With probability ǫm m players are selected randomly and choose ran-
dom actions. They keep these actions if they all do at least as well
under the new action profile as under the existing action profile. Oth-
erwise they revert to the actions they were playing at the start of the
period.

So we have a model of experimentation to which stochastic stability argu-
ments can be applied which does not rely on irrational short term behaviour
by players.

15 Time to convergence

To some degree the arguments in this section are trivial. However, this does
not stop them from being of some importance. One of the greatest problems
affecting stochastic stability arguments is the large amounts of time it can
take on average to move to a stochastically stable convention from a non-SS
convention. Consider the following game:

Player 1

Player 2
1 2

1 10, 10 0, 0
2 0, 0 8, 8

If s = 9 then four mutations by either player are required to move from
the convention (2, 2) to the convention (1, 1). If ǫ = 1

10
we can expect this

to happen over any given four periods with probability of order ǫ4 = 1

10000
.

That is, a lot of time is expected to elapse before a move to (1, 1). With CSS
however, it is not too hard to imagine that following a coalitional deviation
to (1, 1) further coalitional deviations might be more likely or even certain.
This would trivially cut the expected time before a move to (1, 1) occurs.
Such an assumption makes sense because even if the ‘players’ are emerging
from populations of agents, you would expect such successful behaviour to
have some chance of being communicated and thus replicated in the following
period. This argument cannot be used with standard SS: in fact under SS
you might expect errors to become even more unlikely following an error
given the damaging effect of errors on immediate payoffs.

We stress that this argument is not opposed to those of Young (1993)
but rather complementary to them. If we understand the model as being
that of the same game being played repeatedly between representatives of
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different populations then the assumptions of uniform errors and no coali-
tional behaviour become more realistic the larger the underlying populations.
The arguments giving CSS faster convergence times are stronger the smaller
the underlying population and the better the communication of successful
strategies within such populations. This brings us to the next section, which
takes a look at an area where standard stochastic stability is (we argue) an
inappropriate but frequently used tool.

16 Local interaction

“Local matching rules are appropriate to describe situations where
players interact not with the population as a whole, but rather with
a few close friends or colleagues. For example, such a rule might
describe the interactions at a college reunion where each partic-
ipant knows in advance who he or she wishes to see.” Ellison
(1993)

Stochastic stability has been used in a variety of local interaction models,
for example Ellison (1993),Ellison (2000), Goyal & Vega-Redondo (1999),Bala
& Goyal (2000). Ellison (1993) notes that convergence to stochastically sta-
ble states can be much faster when players interact with a small group of
neighbours than when they are uniformly matched across an entire popu-
lation. Ellison notes that it is possible for models to have convergence in
reasonable time and gives an example where this is indeed the case: local
interaction models of coordination where each player can choose between two
strategies A and B and wishes to play strategy A if and only if at least a
certain proportion of his neighbours are also playing strategy A.

As an immediate caveat to the above observation we would like to note
that time to convergence in uniform error models can depend enormously on
the number of strategies available to the players concerned. This is easy to
miss as it is irrelevant in the limit as the probability of an error occuring
approaches zero. As an example consider 5 players who have also committed
errors (for a given set of 5 players this occurs with probability ǫ5 in a uniform
error model). Let us say that when acting in error a player has no preference
over the action he plays. Then if players have 2 actions available to them,
they will all play the same action with probability (1

2
)4 = 1

16
. However,

if they have 10 actions available they will all play the same action with
probability ( 1

10
)4 = 1

10000
. It is clear from this that the number of actions

available can have a large effect on convergence times as helpful coordination
of errors becomes less likely. It can be immediately seen that this problem
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does not arise in CSS, where although coalitional behaviour may be a small
probability event, when it does take place coordination will be automatic 14.
Applying the structure of local interaction models to coalitional behaviour is
also easy: we simply take coalitional behaviour by players who are not ‘close’
to one another to be impossible. Table 1 outlines the reasons why we find
coalitional arguments superior to standard SS in local interaction models.

SS CSS

Movement between conven-
tions depends on a degree of
unpredictability in the actions
of a player’s neighbours, who
he supposedly knows reason-
ably well.

Actions leading to movement
between conventions are deter-
mined by rational behaviour
jointly agreed by players who
know one another.

Spread of new ideas and con-
ventions is an essentially ran-
dom process.

Network effects and the spread
of ideas are modelled in a ra-
tional way.

New technology modelled as
being randomly adopted by
multiple agents at once.

Can model decisions to intro-
duce new technologies as be-
ing jointly made by those who
stand to benefit.

Table 1: Local interaction: SS vs. CSS

17 Conclusion

We have presented the use of coalitional stochastic stability as a method of
equilibrium selection, and argued that it should be preferred to random error
based stochastic stability wherever coalitional behaviour is feasible. We have
demonstrated that the ideas underlying CSS are as intuitive as those under-
lying standard stochastic stability and shown how CSS states can be found.
CSS is a way of incorporating coalitional considerations into equilibria and
thus falls into the same strand of literature as papers on coalition proofness.
We have shown how despite a strong preference for efficiency in the descrip-
tion of CSS, efficiency will not always be attained and that sometimes social

14Although of course this is not necessarily the case in models such as our ‘experimen-
tation’ model given above
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movements to other Nash equilibria (such as the French Revolution or the
move from bRB to aLA in Figure 4) will quickly collapse due to further de-
viations. This does not mean that such changes will not happen. They will
happen, and the resulting instability may take you somewhere new.

We have demonstrated that unlike standard stochastic stability approaches,
a CSS approach does not rely on payoff destructive behaviour by individual
players, and this helps us to justify the interpretation of random behaviour as
experimentation. The payoff beneficial nature of CSS deviations also allows
models to be built which converge much faster to the stable states than has
been the case with previous versions of stochastic stability, reducing history
dependence and enabling the modelling of social change on a more realistic
timescale.

Coalitional behaviour is something that can be observed in many nonco-
operative games and in discussions of Nash and other equilibrium concepts it
is often the elephant in the room: the question being how to incorporate the
realism of coalitional behaviour without discarding the precision of equilib-
rium predictions. This paper has given one way of overcoming this problem.
It would be interesting to see further analysis of games with coalitions and
a multiplicity of equilibria using the tools described in this paper.
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18 Appendix

Proof of propositions 1 and 2. Define P ǫ≤n as identical to P ǫ in all respects
other than that ǫn+1 = 0. Denoting the unique stationary distribution of P ǫ

as µǫ for each ǫn+1 > 0, we know from Theorem 3.1 of Young (1993) that
limǫn+1→0 µǫ = µǫ≤n exists and µǫ≤n is a stationary distribution of P ǫ≤n. We
also know that the states z with µǫ≤n > 0 are contained in the recurrence
classes of P ǫ≤n with the lowest stochastic potential. Take one of these re-
currence classes and call it Z. The process P ǫ≤n restricted to Z is clearly
irreducible and positive recurrent. Hence it has a unique stationary distribu-
tion which must be µǫ≤n restricted to the states in Z and scaled so as to sum
to 1. We denote this distribution µ

ǫ≤n

Z . Define P ǫ≤n−1 as identical to P ǫ≤n

except that ǫn = 0. Define P
ǫ≤n

Z and P
ǫ≤n−1

Z as these processes restricted to
Z. Then reiterating Young’s Theorem we have that limǫn→0 µ

ǫ≤n

Z = µ
ǫ≤n−1

Z

exists and is a stationary distribution of P
ǫ≤n−1

Z . As this applies to every
possible recurrence class Z of P ǫ≤n we then have that limǫn→0 µǫ≤n = µǫ≤n−1

exists and is a stationary distribution of P ǫ≤n−1. Now if we regard deviations
of n-players occuring with probability of order ǫn as the deviations used to
measure stochastic potential, it is immediately clear that for any Z, the
states z ∈ Z such that µ

ǫ≤n−1

Z > 0 are the states with the lowest stochastic
potential.

Continuing in this fashion we see that

lim
ǫ2→0

lim
ǫ3→0

lim
ǫ4→0

. . . lim
ǫn→0

lim
ǫn+1→0

µǫ(z) = µ0(z)

exists and is a stationary distribution of P 0. It is clear from the above that
the states z with µ0(z) > 0 can be calculated using the process described
in Proposition 1. Given that CSS selects a stationary distribution of P 0

and that we know from Young (1993) that stationary distributions of P 0

select convention(s) under the conditions given in Proposition 2, the proof is
complete.
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