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1 Introduction

Any assessment of a voting rule is likely to be based on the extent it aggregates

individual preferences. It is reasonable to suggest that any voting rule must be

ratified by at least a majority of the members of a society if it is going to function

as a democratic way of reaching collective decisions. Condorcet (1785) had first

epitomized an extreme version of this view by suggesting that whenever there is

a candidate (or alternative) always preferred by a majority of voters against any

other candidate on pairwise comparisons, such a candidate, later to become known

as the Condorcet winner (henceforth, CW ) must be elected by the chosen voting

rule. This requirement, called Condorcet consistency, is “widely regarded as a

compelling democratic principle” (Moulin, 1988; sect. 9.4).

In this paper, we will argue that a class of voting procedures based on re-

peated ballots and sequential elimination is superior to ones in which the winner is

determined in a single-round voting or procedures that allow more than one can-

didate to be eliminated in some voting round. We show that when voters behave

strategically,1 sequential, one-by-one elimination procedures often aggregate voter

preferences much better.2 Roughly, in sequential elimination (with repeated bal-

lots) the voting outcome is determined gradually allowing voters more influence

on the outcome and preventing them from getting locked in a “bad” equilibrium

– a non-Condorcet outcome (when a CW exists3) – because of miscoordination.

Even when the CW does not exist, sequential elimination procedures have a nice

feature: the voting outcome always belongs to the ‘top cycle,’ thus dominating, on

majority comparison, any other candidate either directly or indirectly. In contrast,

miscoordination tends to be pervasive in single-round and various semi-sequential

voting and thus may fail to possess the above desirable properties.

The idea of sequential elimination voting is best conveyed by the following

repeated application of the one-person-one-vote principle. Voting takes place in

1Strategic voting, also known as sophisticated voting, was popularized by Farquharson (1969).
2Sequential elimination voting in this paper differs from sequential voting that mostly concerns

with the important issue of information aggregation, as in Dekel and Piccione (2000), Strumpf
(2002), Battaglini (2005) etc. Our main concern is with preference aggregation, and our voters
cast their votes simultaneously and repeatedly in successive rounds.

3For single-peaked preferences CW always exists. Moreover, for small number of alternatives a
CW exists with a high probability (under random preference) – more than 90% for 3 alternatives
and around 70% for 7 alternatives (Fishburn, 1973).
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rounds with all the voters simultaneously casting their votes in each successive

round. In any round the candidate receiving the smallest number of votes is elimi-

nated, with any tie involving the smallest number of votes broken by a deterministic

tie-breaking rule. This process continues until all but one of the candidates have

been eliminated. We call this the weakest link voting. At present the contests

for the leadership of the Conservative Party in Great Britain roughly follow the

weakest link procedure.4 Even the recent contest in 2005 to select the host city

for the 2012 olympic games had the characteristics of weakest link voting (London

emerged the winner after Moscow, New York, Madrid and Paris were eliminated

in that order in successive votes held over four rounds).5 One interpretation of the

weakest link voting is that it is a natural sequential extension of the plurality voting

principle, with elimination of only the worst plurality loser in each round.6 Similar

one-by-one sequential elimination method can be adopted to extend any familiar

single-round voting rule to its appropriate sequential equivalent.

Our results are as follows. When there is a CW and voters are strategic, the

unique equilibrium of a broadly defined sequential elimination voting game will se-

lect the CW (Theorems 1–3; Propositions 1, 2). Furthermore, if there is no CW, we

show that the elected candidate in the appropriately defined sequential voting game

must be in the top cycle (Theorem 4). The sufficient condition on the sequential

voting game that ensure these results requires that any (group of) majority voters

have some minimal collective influence on vote proceedings: by coordinating their

votes in any round a majority can always ensure that any particular candidate who

survived up to that round is not eliminated in that round; further, such vote coordi-

nations by the majority must be “stable” in the sense that should the majority fail

to choose some appropriate coordination of votes that may lead to the particular

4The Conservative Party leaders in 2001 and 2005 were chosen in a two-stage voting, where
the first stage basically followed the weakest link rule: the party’s parliamentary members voted
in successive rounds to reduce a small number of candidates, respectively five and four, to only
two candidates by eliminating a candidate in each round with the least number of votes, and
eventually the party members at large voted to elect the final winner from the two remaining
candidates; see an explanation of the election procedure by Julian Glover in The Guardian, July
10, 2001 at http : //politics.guardian.co.uk/Print/0, 3858, 4196604, 00.html.

5See http : //news.bbc.co.uk/sport1/hi/front page/4655555.stm.
6The weakest link voting is similar to sequential runoff election where alternatives are elimi-

nated one-at-a-time but based on the voters submitting a full strict-order ranking of the remaining
alternatives, eliminating in each round the alternative with the least number of first place votes.
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candidate’s elimination, there will be at least one member of the majority group

who will have an incentive – if his aim were to protect that candidate – to fur-

ther deviate by changing his vote. We call these twin requirements, the majority

non-elimination property .

We show that the majority non-elimination property will be satisfied by sequen-

tial versions of most familiar single-round voting procedures (the unique exception

is the sequential analogue of negative voting). To understand how majority influ-

ence works, consider for instance sequential scoring rules (which eliminate, at any

round, only one candidate with the lowest total score). Clearly, for any candidate

and any majority, placing the candidate at the top by every member of a majority

is stable; furthermore the candidate will have a total score that is strictly higher

than the average score of the remaining candidates, even if every voter outside the

majority places that candidate at the bottom, if the following property holds: the

scores in any round for various ranks be such that the average of the two scores

corresponding to the top and the bottom ranks weakly exceeds the average score

for all the intermediate ranks combined (this property clearly holds for the weakest

link and the sequential analogue of Borda). Thus, if this property holds the major-

ity is able to protect the candidate from being eliminated and hence satisfies the

majority non-elimination property.

In contrast, we identify a large class of instantaneous (single-round) voting rules

that fail to be Condorcet consistent, henceforth CC (Theorem 5 and Proposition

3), or specific voting rules within this class may even fail to include a member in the

top cycle when there is no CW.7 This class includes all scoring rules (for example,

the popular voting rules such as plurality rule, Borda rule and negative voting;

see Moulin, 1988), plus approval voting, two alternative versions of instant runoff

voting,8 and some less well-known voting rules such as Copeland and Simpson. (Our

7Roughly, instantaneous voting means voting takes place only once but the winner may be
selected in one or more rounds of eliminations.

8The standard version of instant runoff voting, also known as alternative vote method, full
preferential voting and single transferrable voting etc. (see Wikipedia, the free encyclopedia,
at http://en.wikipedia.org/wiki/Instant-runoff voting), requires voters to submit a full ranking
of candidates in a single ballot. If no candidate wins a majority of the top rank, the candidate
receiving the smallest number of top-rank votes gets eliminated and a fresh count is taken with the
rankings rearranged. The vote counting (using transferrable votes) continues until some candidate
secures a majority of the top rank. A second variant of the voting rule does not use the majority
top-rank trigger but instead eliminates candidates sequentially, one-by-one: first eliminate the
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special mention of the last two rules is motivated by an interesting observation in

Moulin (1988, ch. 9) that these rules are somewhat unique in that they exhibit

Condorcet consistency under sincere voting – a feature not shared by most standard

voting rules.)

We also highlight two specific features of the sequential voting method that are

important for Condorcet consistency: one-by-one elimination and repeated ballots.

For the first, we provide two counter examples: (i) a plurality runoff rule eliminating

all but two candidates in the first round using plurality rule and then choosing the

winner in a second ballot from the remaining two candidates using majority rule,

is shown to fail Condorcet consistency;9 (ii) an exhaustive ballot method, which is

same as the weakest link voting except for a majority vote trigger (that is, if at any

round a candidate receives majority votes then that candidate immediately becomes

the winner), also fails Condorcet consistency.10 These examples are summarized in

Proposition 4. For the second, in Proposition 5 we consider a one-shot version of

the weakest link and show that it is not CC. Here repeated ballots, in contrast to

one-shot games, allow backward induction type reasoning important for Condorcet

consistency.11

Overall, both the positive and negative results on Condorcet consistency in this

paper should be viewed as taking an important issue significantly further that has

only been intermittently studied in the voting literature. One strand of the litera-

ture analyzing the issue of Condorcet consistency under sophisticated voting focus

on binary voting and its variants (McKelvey and Niemi, 1978; Banks, 1985; Dutta

and Pattanaik, 1985; Dutta and Sen, 1993; Dutta, Jackson and Le Breton, 2002;

Bernheim and Nataraj, 2004; and Bernheim et. al., 2006).12 An alternative focus

candidate with the least number of top-rank votes, then do vote transfers and eliminate the
candidate who on recounting has the least number of top-rank votes, and so on (with possible ties
broken by a deterministic tie-breaking rule).

9Plurality runoff rule falls between the two extremes – weakest link and plurality voting. It
is also known under alternative names such as two-ballot, double ballot, second ballot, majority
runoff, and two round system.

10This voting rule is used to select the host city for the olympic games; see
http://www.gamesbids.com/english/archives/past.shtml.

11Similarly, the instant runoff voting without the majority top-rank trigger is also not CC.
12In binary voting voters vote in each round over only two choices and a choice may include

one or more than one candidate. The voting proceeds by elimination of candidates through
the voting rounds using majority rule. With voter choice in each round restricted to only two
candidates is the well-known sequential binary voting. The last two papers consider a variant of
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on the same issue makes the assumption of sincere voting (see ch. 9 of Moulin, 1988

for example). However, very little is available by way of a general characterization

of CC voting rules under strategic voting.13 Our first task therefore has been to

bring together various voting rules under a unified analysis and closely scrutinize

the Condorcet consistency question. The significance of the exercise could be seen

in the context of the well-known sequential binary voting. Our sequential voting

family exhibiting Condorcet consistency, and more broadly the top-cycle property,

includes and extends well beyond the sequential binary voting. In contrast to only

two candidates considered at any voting round in sequential binary voting, in our

sequential elimination schemes there is virtually no exogenous restriction on how

many candidates might be considered at each round of voting14 and the sets of

candidates available at later rounds evolve endogenously through equilibrium be-

havior at earlier rounds; neither do the voting rules need remain the same in every

round. Also, with the simple binary comparison lacking, general sequential elimi-

nation voting poses a far greater challenge as the backwards induction arguments

involving iterated deletion of dominated strategies (to insure equilibrium existence

and uniqueness) are no longer applicable – see the discussion following Theorem

4. The second point that we like to emphasize is that sequential, one-by-one elim-

ination voting methods in general deserve much greater attention than have been

awarded so far.15 In particular, in practice some of these methods may be adopted

in important committee/electoral decisions where only a small number of alterna-

tives are considered from which a single alternative is to be elected. With a small

number of alternatives the costs of multi-round elections are unlikely to be of seri-

ous concern. Furthermore, while some important voting methods used in practice,

such as plurality runoff rule and exhaustive ballots, do coarsely follow the principle

of sequential elimination (as in the weakest link rule), these rules fail to fully im-

plement one-by-one eliminations. In normative terms, our recommendation is that

if possible such rules should be modified by carrying out one-by-one eliminations.

sequential binary voting that involve dynamic legislative decision making with real-time agenda-
setting and/or discounting.

13Some papers (Bernheim and Nataraj 2004 and Benheim et. al. 2006) rely on a behavioral
assumption – as-if pivotal voting by the voters – to cut through the usual strategic coordination
problem of voting games.

14It becomes quite clear that the binary comparison of candidates in each round is not essential
for Condorcet consistency.

15Sequential binary voting is an exception.
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In general, while the sequential voting family that we propose in this paper is large,

individual voting rules can be simple/intuitive and easy to administer so that they

are adaptable to a broad range of applications. However, it is worth noting that

though all voting rules satisfying our suggested procedures are CC they do not

necessarily satisfy other desirable objectives such as Pareto efficiency or neutral-

ity (with respect to agendas),16 so any decision regarding the choice of a voting

mechanism might also consider some of these other objectives.

The rest of the paper is organized as follows. In the next section we discuss

an example, followed by formal descriptions of voting rules and related equilibrium

solution concepts in section 3. Section 4 contains results on sequential elimination

voting. In section 5, we analyze single-round and some other popular voting mech-

anisms. Section 6 concludes. The proofs not included in the main body of the

paper appear in the Appendix A–C and the Supplementary material.

2 Preliminary observations on the weakest link

Much of our insight about sequential elimination voting versus one-shot voting can

be gained by studying the weakest link voting and comparing against its one-shot

counterpart. This we do with the help of an example.

Example. Consider three voters, and four candidates: {w, x, y, z}. The voters’

strict preferences over candidates in a descending order (and common knowledge

among the voters) are as follows:

1 : y, x, z, w

2 : z, x, y, w

3 : w, x, z, y.

Note that candidate x is the CW.

Consider first the case of plurality voting with a fixed deterministic tie-breaking

rule. Then any candidate x, y and z can be the winner in some (weakly) undom-

inated Nash equilibrium. To see this, note that voting for any candidate other

than the one lowest in one’s ranking is a weakly undominated strategy. Thus, for

example, one undominated Nash equilibrium is voters 1 and 2 choose y and voter

16For instance, weakest link voting is neutral but not necessarily Pareto efficient (with more
than three candidates) while sequential binary voting is Pareto efficient but certainly not neutral.
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3 chooses z; this results in y being elected. Similarly, one can construct equilibria

that result in x or z being elected (w can also be a winner if we assume further that

the tie-breaking rule eliminates x first). Thus, plurality voting is not CC because

there is a coordination problem (in terms of selecting the CW ) among the voters

that cannot be resolved in equilibrium.17

Consider next the weakest link voting. Before characterizing the strategic equi-

librium outcome, suppose first that all three voters vote sincerely so that at each

voting stage each votes for his most preferred candidate among the surviving ones.

Clearly, x will be eliminated at the first stage (regardless of the tie-breaking rule)

and thus cannot be the winner.

In contrast, assume now that the three voters behave strategically.18 Without

defining formally a solution concept at this stage, we will argue informally why

strategic behavior must result in x winning. We will invoke a backward induction

argument: Consider first the last stage in which only two candidates remain. If x is

one of these candidates then clearly x will win at this stage because two out of three

voters prefer x to the other candidate (and for them voting for x weakly dominates

voting for the other candidate). Similar argument implies that if the two candidates

at the last stage are (z, w), then z wins. If they are (z, y) then z wins as well and

for (y, w) candidate y emerges the winner. Consider now the second-to-last stage

of voting: If the three surviving candidates at this stage are (y, z, w), then z must

emerge the winner. This is because given the possible continuations (as specified

above), if z survives this stage he will become the eventual winner and otherwise

y will be the winner. So, voting for z is the only (weakly) undominated choice for

voters 2 and 3. Hence z will not be eliminated at this stage and will emerge the

winner. A similar argument implies that if x is one of the remaining candidates at

the second-to-last stage then he must emerge the eventual winner. We now consider

the first stage of the voting. Given the possible continuations as described above,

if x is eliminated at the first stage then z will emerge the winner, whereas x will

emerge the winner if any of the other three candidates is eliminated. Hence, the

17This is hardly surprising – Dhillon and Lockwood (2004) have shown this applying iterative
deletion of weakly dominated strategies.

18Strategic/non-sincere voting is quite common: in the 2005 election to host the 2012 olympic
games and also for the leadership contests for the Conservative party in 2001 and 2005, there were
instances of vote dropping (i.e. number of votes in favor of particular candidates in later rounds,
with fewer candidates remaining, were less than in earlier rounds).
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only weakly undominated choice for voters 1 and 3 is to vote for x. Thus x will

survive and will emerge the winner.

In contrast to plurality voting, in the weakest link by working backwards in

each stage the voters are able to coordinate their votes and ensure that the CW

is never eliminated. The voters’ ability to coordinate in the weakest link derives

from both the extensive form, sequential structure of the game as well as the power

of the equilibrium refinement (based on backward inductions) associated with the

dynamic structure of the game.19

Before leaving this section, we like to mention that this example is rather special

because all the candidates can be majority-ranked (therefore any subset of candi-

dates has a CW ). Nevertheless, it highlights the advantage of a voting procedure

in which voters are called to step in repeatedly in submitting their preferences over

ones that involve a single stage. As we will show later, this advantage goes beyond

the weakest link rule. Indeed we will introduce a large class of sequential elimina-

tion procedures which guarantee the selection of the CW in strategic voting and

will also argue that almost all well-known single-round voting procedures fail to

have this property. ||

3 The Voting Rules and Equilibrium Solutions

Voting Games

First we describe the class of voting games considered in this paper. This class

is quite general.

The set of candidates is denoted as K with cardinality k, and the voter set is

denoted as N with cardinality n, both k and n at least three. Throughout we

assume n to be an odd number, but this can be relaxed (see footnote 23). Also

for simplicity of exposition, K ∩ N = ∅. Each voter i ∈ N has a strict, ordinal

preference ordering over the candidates given by �i. The voters have complete

19To see this, further consider a one-shot game in which voters submit at the outset their entire
weakest link strategies (that maps from the set of available candidates in any elimination round to
a single candidate for non-elimination in that round) and then the winner is determined according
to the weakest link rule. In this one-shot weakest link voting, backward inductions type reasoning
cannot be applied (is not an appropriate solution concept) and as a result the CW may fail to be
elected – see Proposition 5 for a replicated version of the above example (with two voters of each
type).
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information about preferences.

The class of voting games we consider are as follows. Each voting rule consists

of the voters/players voting in at most J rounds/stages, J < k. At each stage

the voters simultaneously vote (i.e., take an action) and at least one candidate is

removed. At the end of a maximum of J rounds voting one candidate survives

who is the winner. If C is the set of candidates left at any stage j ≤ J with

|C| ≥ 2 (|.| denoting cardinality) then a choice for voter i at that stage consists

of choosing an element from an arbitrary choice set Ai(C, j). Moreover, if each

i chooses ai ∈ Ai(C, j) at this stage then we shall denote the set of eliminated

candidate(s) by e(aj, C) ⊂ C where aj = (a1, ..., an) is the profile of votes at stage

j. So if the voting finishes in some J ≤ J rounds and voters choose the sequence

of votes {aj}Jj=1, then the winning candidate is w 6∈ ∪Jj=1e(a
j, C).

For any j ≤ J let hj = (a1, ..., aj−1) be a complete history (description) of the

actual voting decisions up to stage j. Define Hj to be the set of histories at round

j and H =
⋃

j Hj be the set of all histories, with the convention that H0 refers to

the initial null history. Also, let C(h) be the set of remaining candidates at h ∈ H.

Now a (pure) strategy for voter i is a function si : H →
⋃

j,C Ai(C, j) such that

si(h) ∈ Ai(C(h), j) if h ∈ Hj. Also, denote the set of (pure) strategies of voter i by

Si and let S = ×iSi.

The above set of games clearly includes the weakest link voting, and more

generally any sequential (elimination) voting, and any single-round voting such as

plurality rule, approval voting, Borda voting and negative voting. In the case of the

weakest link, the number of voting rounds J is k−1, the set of choices Ai(C, j) = C

and at each stage one candidate is eliminated so that |e(aj, C)| = 1.

In general, sequential elimination voting rules are such that at each stage only

one candidate is eliminated.

In the case of single-round voting, J = 1, all voters submit their strategies at

the first stage and all the candidates except one are eliminated simultaneously.

Also, included in our voting games will be three other categories: one with J > 1

but if (and only if) at any round a candidate gets majority votes he is immediately

declared the winner ending any further ballot (exhaustive ballot, for example); a

second one that eliminates candidates in one or more attempts following a single

ballot (so that J = 1, as in the case of instant runoff voting); finally, voting involving

repeated ballots (1 < J < k− 1) and more than one candidate being eliminated in
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some round (such as plurality runoff voting with J = 2).

The equilibrium

Since the voting games we consider may have a dynamic structure, we require

our equilibrium concept to be subgame-perfect. In addition, as is common in the

literature on voting, we need to eliminate choices that are weakly dominated, oth-

erwise there are a large number of trivial equilibria in which each voter’s choice

is immaterial. Therefore, an equilibrium in our set-up is a strategy profile for the

voters that is a subgame perfect equilibrium and is such that at each stage the

votes of each player is not weakly dominated given the equilibrium continuation

strategies of others in future stages.

In other words, any equilibrium strategy profile s∗ ∈ S in a voting game must

have the following properties. In any final stage subgame (i.e., at stage J), s∗

must be a weakly undominated Nash equilibrium in the subgame. In any subgame

starting with stage J−1, the voters’ strategies must be an undominated Nash equi-

librium in the subgame given that the voters play the game according to s∗ in the

continuation game (thus the permissible strategies of the other voters with respect

to which the weak-domination check is carried out are consistent with the equilib-

rium strategy in the next stage). This backward elimination procedure continues

all the way to stage 1.

Formally, for any history h ∈ H, let Γ(h) be the subgame at h and w(s, h) be

the candidate elected in the subgame Γ(h) if the voters follow strategy profile s in

this subgame. Also, for any strategy profile s ∈ S and any history h ∈ H, define

the set of strategies for all players other than i that are consistent with s in every

subgame after h by

S̃−i(h, s) = {s′−i ∈ S−i | s′−i(h, h′) = s−i(h, h′) for all non-empty h′ s.t. (h, h′) ∈ H}.

Definition 1. A strategy profile s∗ is an equilibrium if for any history h ∈ H it

satisfies the following properties in the subagme Γ(h):

(Nash) For any i, w(s∗, h) �i w(si, s
∗
−i, h) ∀si ∈ Si,

where �i means either �i or =;

(Weak non-domination) For any i, 6 ∃si ∈ Si s.t.

w(si, s−i, h) �i w(s∗i , s−i, h) ∀s−i ∈ S̃−i(h, s∗)

w(si, s−i, h) �i w(s∗i , s−i, h) for some s−i ∈ S̃−i(h, s∗).

 (1)
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Notice that for any s ∈ S, at any h ∈ Hj we can define a one-shot reduced

form voting game Γ̂(h, s) in which voter i’s strategy set is Ai(C(h), j) and, given

any profile aj ∈ A(C(h), j) (=
∏

i Ai(C(h), j)) of votes, the outcome of the game

is given by w(s, (h, aj)) elected. Clearly, our definition of equilibrium strategy in

Definition 1 is equivalent to showing that the choices that the equilibrium strategies

prescribe at any history h constitute an undominated Nash equilibrium of the one-

shot reduced voting game at h. Thus, s∗ is an equilibrium if and only if s∗(h) is

an undominated Nash equilibrium of Γ̂(h, s∗), for all h.

Remark 1. Our equilibrium concept is effectively a backward elimination proce-

dure. However, note that it differs from the more familiar procedure of iterative

elimination of (weakly) dominated strategies; while in the latter approach the weak-

domination check is carried out in relation to the entire game, ours is only along

the subgames.20,21 Iterative elimination on its own is unlikely to solve the misco-

ordination problems that result in undesirable outcomes; in fact, it is well known

in other voting contexts that iterative elimination can have very little elimination

power.22

Remark 2. Note also that any trembling hand perfect equilibrium in extensive form

satisfies our definition of equilibrium. This is because any trembling hand perfect

equilibrium in extensive form is a subgame perfect equilibrium and excludes weakly

dominated choices at different information sets. We could have alternatively started

with trembling hand perfect equilibrium in extensive form as our equilibrium concept

(see also our remark at the end of subsection 4.1). However, for ease of exposition

we adopt the above definition of equilibrium.

Remark 3. In the case of single-round voting the standard equilibrium concept is

undominated Nash. Note that our twin requirements of subgame perfection and non-

domination boil down to this standard equilibrium definition for single-round voting

rules. Thus, the comparisons to be made in section 5 between sequential elimination

voting and single-round voting are based on the same benchmark solution concept.

20Moulin (1979) formally analyzed the iterative elimination procedure to generalize the concept
of sophisticated voting and applied it to a significant class of voting – voting by veto, kingmaker
and voting by binary choices.

21In our setup the two definitions may differ because at each stage our voters vote simultaneously
(the game is not one of perfect information) over more than two alternatives.

22For example, for plurality rule Dhillon and Lockwood (2004) show that anything other than
one’s lowest-ranked candidate will survive iterative eliminations of weakly dominated strategies.
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Next we define Markov equilibrium.

Definition 2. An equilibrium s∗ is said to be Markov if for any i and any j,

s∗i (h) = s∗i (h
′) ∀h, h′ ∈ Hj such that C(h) = C(h′).

Markov equilibrium strategies are such that at any stage onwards the strategies

depend only on the candidates who have survived up to that stage and not on the

specific history leading up to it. In Appendix B, we justify the use of the Markov

assumption for our sequential elimination voting.

4 Sequential (elimination) voting

4.1 Condorcet consistency of the weakest link

Much of our insight about sequential elimination voting can be gained by studying

the weakest link voting, so we start with this particular voting rule and then broaden

our analysis to a very general class of sequential elimination voting.

First, some notations. Given the voters’ strict preference ordering over candi-

dates, a binary comparison operator T defines a candidate x to be majority preferred

over another candidate y, written as xTy, if the number of voters preferring x over

y exceeds the number of voters preferring y over x.23

Next, the CW, if it exists, is defined as a candidate z ∈ K such that zTz′, for all z′ ∈
K. Similarly, for any set of remaining candidates C ⊆ K the CW with respect to

C, if it exists, is a candidate z ∈ C such that zTz′ for all z′ ∈ C.

We say that an equilibrium s∗ of a voting rule is CC at every subgame if for every

h ∈ H such that the set of remaining candidates C(h) has a CW winner z(h), the

equilibrium strategy induces the CW with respect to C(h) in the subgame defined

by h (i.e. w(s∗, h) = z(h) if z(h) is defined for h).

Our first result is an equilibrium characterization of the weakest link game:

Theorem 1. Any Markov equilibrium of the weakest link voting is CC at every

subgame.

23To relax the assumption of odd number of voters, extend the definition of majority preference,
whenever there is a tie, by applying a tie-breaker.
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Proof. We demonstrate this by (backward) inductions on the number of remaining

candidates in any subgame.

First, consider any subgame at stage k − 1 with only two candidates, z and z′.

Because sincere voting is the only Nash equilibrium that is also undominated in

this final stage subgame, the CW must be the winner.

Now suppose the following induction hypothesis is true:

For every history h ∈ H such that the set of remaining candidates C(h) consists

of j candidates, the following holds : if C(h) has a CW, z, then z will become the

ultimate winner in the subgame defined by h (i.e., w(s∗, h) = z).

We then prove that the same holds at any history/subgame with j + 1 remaining

candidates.

Suppose not; then there exists a subgame defined by some history h such that

the set of the remaining candidates C(h) has j + 1 candidates, C(h) has a CW,

z, and some other candidate z′ 6= z becomes the ultimate winner in this subgame.

Now since z is the CW with respect to C(h), it follows by the induction hypothesis

that z is eliminated immediately at h at stage k − j (since at h there are j + 1

candidates, the subgame defined by h begins in round k − j). Otherwise, since z

is also the CW with respect to the set of candidates in the next round, by the

hypothesis he will become the ultimate winner.

Next, consider those voters who prefer z over z′ and their immediate vote at

h in stage k − j. By definition of z, these voters will form a majority. We claim

that for any such voter i, voting for z weakly dominates voting for any other

candidate z′′ at this stage, given the equilibrium continuation strategies in the future

stages. To show this, first notice that if voter i chooses z′′ there are two possible

outcomes depending on the choices of others at this stage: either (i) z survives at

this stage and, by the induction hypothesis, all the subsequent stages and becomes

the ultimate winner; or (ii) z is eliminated and, by the Markov property of the

equilibrium strategies, z′ becomes the ultimate winner. Now if (i) is the case then

if i switches his vote from z′′ to z the outcome will be the same with z surviving all

stages and becoming the winner. If (ii) is the case then if i switches his vote from

z′′ to z, either z is eliminated and the outcome will be the same with z′ becoming

the ultimate winner or z survives this stage, and by the induction hypothesis, all

the subsequent stages and becomes the ultimate winner. Finally, note that there

is a vote profile for all voters other than i (for example, (n− 1)/2 of them vote for
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z′′ and the remaining (n − 1)/2 voters vote for z) such that if voter i votes for z′′

then z would be eliminated and z′ goes on to win whereas if he votes for z then z is

not eliminated and z wins. Since voter i prefers z to z′, the choice of z thus weakly

dominates z′′ for i. This implies a majority of voters would vote for z, contradicting

the supposition that z is eliminated at this stage.

Since we already proved our hypothesis for subgames with two candidates, it

follows by the induction step above that if there is a CW for the set C, he will be

elected in any subgame with C. Q.E.D.

The above result is a characterization result for Markov equilibria of the weakest

link voting when the set of (remaining) candidates has a CW. However, in order to

ensure that the result is not vacuous one has to show that the weakest link game

has a (Markov) equilibrium. This is particularly important because even if a set of

candidates has a CW, there could be subgames off-the-equilibrium path without a

CW among the remaining candidates and it is by no means clear that there is an

equilibrium in such subgames. Thus, Theorem 1 should be viewed in combination

with Theorem 2 below.24

Theorem 2. Assume n ≥ 2k − 1. Then in the weakest link game there exists a

Markov equilibrium.

The proof of this result is rather technical and can be found in Appendix A.

There are several further points to note concerning the characterization result

in Theorem 1. First, notice that the arguments in the proof of this result does

not make any reference to the tie-breaking rule; thus the weakest link voting is

CC for any arbitrary deterministic tie-breaking rule. Also, if the preferences of the

voters can be represented using expected utility framework then by an analogous

argument one can show that Theorem 1 holds for random tie-breaking rules.

Second, as we mentioned before, the weakest link is the sequential analogue

of (one-shot) plurality voting. The latter will be later shown to fail Condorcet

24Since we wrote an earlier version of this paper (available under a different title: Bag, Sabourian
and Winter, 2002), we recently came across Peress (2004) who also examines the issue of Condorcet
consistency using the weakest link (that he calls multistage runoff) but under a very restrictive
assumption that every subset of candidates has a CW (all candidates can be majority ranked).
In particular, he does not need to consider the possibility that off-equilibrium subgames may not
have a CW. This makes the required analysis in Peress (2004) much simpler. Also, his equilibrium
concept seems to have similarity with ours but is not clearly defined.
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consistency (Theorem 5; Proposition 3). Thus, Theorem 1 illustrates the distinct

advantage of the sequential elimination procedure over a single-round elimination.

Later, based on Theorem 3, similar parallels can be made between other well-known

single-round voting rules and their sequential counterparts.

Third, limiting the result to equilibria that are Markov could be considered a

limitation of Theorem 1. However, there are two points that we like to make with

respect to the Markov restriction. First, a weaker version of the Markov property

would suffice for the proof of Theorem 1. All we require to obtain the result is

that the equilibrium strategies do not depend on the history through the specific

configuration of votes that lead to the particular candidates’ eliminations. However,

the strategies can still depend on the order in which the candidates are eliminated.

In fact, if we assume that the votes are not revealed between stages but only the

identity of the eliminated candidate at each stage is announced, then we do not

need the Markov property. Second, it could be shown that if, in choosing the

strategies, players have, at least at the margin (lexicographically), a preference for

simplicity (aversion to complexity) then all equilibria are Markov.25 Basic reason is

that in our sequential voting games, for any equilibrium strategy profile every set of

remaining candidates occur on the equilibrium path at most once. If any player i’s

strategy is non-Markov, then i makes a different choice at two different subgames

with the same set of remaining candidates C; but then since C occurs at most

once on the equilibrium path, player i could economize on complexity by always

making the same choice at every subgame with C without sacrificing payoffs. In

Appendix B (Theorem 6) we provide a formal justification for this claim for the

general sequential elimination voting game.

Finally, as discussed after the equilibrium definition, since every trembling hand

perfect equilibrium in extensive form satisfies our equilibrium concept, it follows

that every Markov trembling hand perfect equilibrium in extensive form of the

weakest link voting is CC at every subgame. ||

4.2 Sequential elimination with majority property

Next we generalize the Condorcet consistency result in Theorem 1 to a rather

general sequential process of elimination where in each round only one candidate is

25Properties of Markov equilibrium in general dynamic games have been studied by Chatterjee
and Sabourian (2000), Sabourian (2004), and Gale and Sabourian (2005).
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eliminated. In these games, as we mentioned before, players vote in k − 1 rounds,

the set of votes for voter i at round j < k when C is the set of remaining candidates

is Ai(C, j), and one candidate e(aj, C) is eliminated at each round j.

An important aspect of this procedure would be the decisive role that any group

of majority voters can play: at any round a majority of voters can ensure that any

particular candidate is not eliminated. We now specify this important property for

the set of sequential (elimination) voting games as follows.

Majority non-elimination (MNE) property : For any stage j < k, any set of

remaining candidates C, any c ∈ C, and any set of majority voters φ ⊆ N , there

exists a set of strategy profiles Dc
φ(C, j) ⊆ Πi∈φAi(C, j) for the majority φ such that

the following two conditions hold:

[i] (Majority protection) If all members of φ choose some profile aφ ∈
Dc

φ(C, j) then c is not eliminated, i.e.,

e(aφ, a−φ, C) 6= c, ∀a−φ ∈ Π` 6∈φA`(C, j).

[ii] (Protection stability) For any profile aφ 6∈ Dc
φ(C, j) such that e(aφ, a−φ, C) =

c for some a−φ ∈ Π` 6∈φA(C, j), there exists some member of the majority i ∈ φ and

an action ac
i ∈ Ai(C, j) such that

∀a′−i ∈ A−i(C, j) if e(ai, a
′
−i, C) 6= c then e(ac

i , a
′
−i, C) 6= c (2)

and ∃a′−i ∈ A−i(C, j) s.t. e(ai, a
′
−i, C) = c and e(ac

i , a
′
−i, C) 6= c. (3)

That is, ai is “inferior” to ac
i in protecting c.

All sequential voting rules satisfying these two non-elimination conditions constitute

the family F . ||

Note that {Dc
φ(C, j)} are sets of actions/votes for non-elimination of any candi-

date c. For instance, if each stage of the sequential voting involves voters ranking

the candidates, one can think of {Dc
φ(C, j)} as all actions by the majority that

place c at the top of their ranking; then the two conditions in the MNE-property

require that [i] if a majority of voters place c at the top then c cannot be elim-

inated, and [ii] if a majority fails to place c at the top and c is eliminated then

there is some voter from that majority who will have an action that is (weakly)

better than his particular action in the ‘failed majority action profile’ in protecting

c. Later we will verify that sequential extensions of approval voting and a class
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of scoring voting rules (that includes plurality and Borda rules as special cases)

plus Copeland and Simpson rules (see Moulin, 1988, ch. 9 for the last three voting

rules) fall under the family F . Further, it can be checked that the important class

of sequential binary voting comes under F .26

Theorem 3. All Markov equilibria of any sequential voting rule in the family F
are CC at every subgame.

Proof. Go back to the proof of Theorem 1. It is not difficult to see that the

arguments there will apply equally for the entire family F . In particular, fix any

voting game belonging to the set F and any Markov equilibrium. Assume the

hypothesis for the case of j candidates: if a set of candidates C has j candidates

and a CW then he will be the ultimate winner in any subgame with the set of

remaining candidates C. As in Theorem 1 we can then show that the same holds

for any set of j + 1 candidates with subgame starting at stage k − j. Otherwise,

there exists a set C̃ with j + 1 candidates at some subgame at stage k − j such

that C̃ has a CW, z, and z′ 6= z is elected in this subgame. Then z is eliminated

immediately in this subgame at stage k−j (otherwise, by the induction hypothesis,

z will become the ultimate winner). Moreover, since z is the CW with respect to

C̃, there exists a set of majority voters φ ⊆N who prefer z over z′. Now by the

MNE-property, there exists sets of action profiles Dz
φ(C̃, k− j) ⊆ Πi∈φAi(C̃, k− j)

satisfying conditions [i] and [ii] (of the non-elimination property).

Next suppose the voters choose a profile a ∈ A(C̃, k − j) at stage k − j in this

subgame. Then since at this stage z is eliminated it follows from condition [i] of

the MNE-property that aφ 6∈ Dz
φ(C̃, k − j). Then since e(a, C̃) = z by condition

[ii] of the MNE-property, it follows that there exists a voter i ∈ φ and an action

az
i ∈ Ai(C̃, k − j) such that conditions (2) and (3) hold for the case that c = z.

We now claim that the vote az
i weakly dominates ai at this stage k − j given

the equilibrium continuation strategies in the future stages. To show this first note

that if voter i chooses ai there are two possible outcomes depending on the choices

of others at this stage: either [1] z survives at this stage and, by the induction

hypothesis, all the subsequent stages and becomes the ultimate winner; or [2] z is

26Note that our sequential elimination voting is quite general in the sense that voters can submit
a (weak or strict) ranking, or the preference submission may even be more abstract than a simple
ranking of candidates.
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eliminated and, by the Markov property of the equilibrium strategies, z′ becomes

the ultimate winner.

Now if [1] is the case then if the voter switches his vote from ai to az
i , the outcome

will be the same with z surviving all stages and becoming the winner; this is because

by (2) in condition [ii] of the MNE-property e(ai, a−i, C̃) 6= z ⇒ e(az
i , a−i, C̃) 6= z,

for any a−i ∈ A−i(C̃, k − j).

If [2] is the case then if the voter switches his vote from ai to az
i , either z is

eliminated and the outcome is the same with z′ becoming the ultimate winner or

z survives this stage, and by the induction hypothesis, all the subsequent stages

and becomes the ultimate winner. Furthermore, the switch will ensure the latter

(z surviving and becoming the ultimate winner) in some situation because, by (3)

in condition [ii] of the MNE-property, there is some a−i ∈ A−i(C̃, k − j) such

that e(ai, a−i, C̃) = z (so that z′ would have been the eventual winner) and yet

e(az
i , a−i, C̃) 6= z (so that z is the winner).

Since voter i prefers z to z′, the choice az
i weakly dominates ai. But this is a

contradiction; hence the induction hypothesis holds when there are j+1 candidates.

By a similar argument as above, it is easy to check that the hypothesis is also

true for j = 2. Therefore, by induction it follows that at any subgame if the set of

remaining candidates has a CW, then he will be elected in the subgame. Q.E.D.

Two brief remarks at this stage. First, our Condorcet consistency result, and

more generally the top-cycle result to be stated in Theorem 4, do not require

strategies to be Nash as part of the equilibrium definition; we impose the Nash

requirement mainly to make the equilibrium definition consistent with the non-

sequential voting games of section 5 and a related negative result in Theorem 5.

Second, the Markov assumption for Theorem 2, like Theorem 1, is justifiable as we

have argued before (see Theorem 6 in Appendix B). Also, as in Theorem 1, any

Markov trembling hand perfect equilibrium in extensive form is also CC.

The scope of F . To fully appreciate Theorem 3, it is important that we further

elaborate the scope of the voting family F . First consider scoring rules.

Definition 3. (Scoring voting rules [Moulin, 1988, ch.9]) Fix a nonde-

creasing sequence of real numbers ς1 ≤ ς2 ≤ . . . ≤ ςk with ς1 < ςk. Voters rank the

candidates, thus giving ς1 score to the one ranked last, ς2 to the one ranked next to

last, and so on. A candidate with a maximal total score is elected.
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Thus, there are k ranks and the rankings are not necessarily strict.

Definition 4. (Sequential scoring rule) A sequential scoring rule is the sequen-

tial, one-by-one elimination analogue of scoring rules:

• At any stage and for any set of remaining J ≤ k candidates, fix a non-

decreasing sequence of real numbers ς1 ≤ ς2 ≤ · · · ≤ ςJ with ς1 < ςJ .

• At the particular stage, voters rank the candidates according to the above

sequence, and the candidate receiving the lowest total score is eliminated.

Proposition 1. Any sequential scoring rule belongs to the family F , if at each

stage the scores associated with different ranks are such that

1

2
(ς1 + ςJ) ≥ 1

(J − 2)

J−1∑
j=2

ςj. (4)

Condition (4) implies that if any majority voters place a candidate c at the

top and the remaining voters place c at the bottom then the resulting total score

of c can never be the lowest (exceeds the average score of the other candidates).

Therefore, this condition ensures that c is not eliminated, irrespective of what

others do, and thus the set of actions by a majority that place a candidate at the

top satisfy majority protection and hence the MNE-property (protection stability

is also satisfied by any strategy that does not place c at the top because it is then

always possible to protect c better by improving its ranking). In fact, the MNE-

property cannot be guaranteed with sequential scoring if condition (4) were not to

hold.

Both plurality and Borda rules satisfy (4), thus the corresponding sequential ex-

tensions – the weakest link and sequential Borda rules – satisfy the MNE-property.

However, the negative voting with ς1 = 0 and ςj = 1 for all j > 1 would fail (4).

Moreover, one can show that its sequential extension – sequential veto rule (in each

stage each voter vetoes one candidate and the one receiving the maximum number

of vetoes is eliminated) – fails the MNE-property. This is because a majority of

voters may not always be able to guarantee non-elimination of a candidate c by

giving it the maximum point, 1: The only way to ensure non-elimination of c is for

the majority to coordinate to veto some other candidate(s) other than c; but this

may violate protection stability condition because strategies that do not coordinate
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on vetoing some other candidate(s) need not be inferior in protecting the particular

candidate c.

Three other one-shot rules (not part of scoring rules) – approval voting, Copeland

rule and Simpson rule – have similar sequential extensions with the Condorcet con-

sistency property, as summarized below.27

Proposition 2. The sequential extensions of approval, Copeland and Simpson

voting rules belong to the family F .

The proof of Proposition 1 appears in Appendix C. Proposition 2 proof is very

similar and omitted (see also footnote 41).

Arbitrary voter preferences including no CW

So far our analysis is based on the assumption that a CW exists. The structure

of equilibrium in the absence of a CW should be of interest. The next result applies

to the sequential family F , with or without a CW.

Before stating our result let us define for any set of candidates C ⊆ K the set

of top cycle with respect to C by

T C(C) = {x ∈ C : ∀y ∈ C, y 6= x, either xTy

or there exist x1, x2, . . . , xτ ∈ C candidates such that xTx1T . . . TxτTy}

where, as before, T is the binary operator representing majority preference. We

also refer to T C(K) simply by the top cycle.

27In approval voting, a voter is allowed to approve or disapprove any number of candidates
(point 1 to indicate approval of a candidate and point 0 to denote disapproval) except that the
voter cannot approve all or disapprove all the candidates. The candidate with maximal votes wins
(see Brams and Fishburn, 1978, and Myerson, 2002).

Copeland and Simpson rules (Moulin 1988, ch. 9) are based on voters submitting only strict
order rankings (so that J = k). For Copeland rule, candidate a, compared with another candidate
b, is assigned a score +1 if a majority prefers a to b, −1 if a majority prefers b to a, and 0 if it is
a tie. Summing up the scores over all b, b 6= a, yields the Copeland score of a. A candidate with
the highest such score, called a Copeland winner, is elected. For Simpson rule, for candidate a

denote by N(a, b) the number of voters preferring a to another candidate b. The Simpson score
of a is the minimum of N(a, b) over all b, b 6= a. A candidate with the highest such score, called
a Simpson winner, is elected.

Sequential extensions of the above voting rules would eliminate, at any round, the candidate
that receives the lowest score, applying a tie-breaker wherever necessary.
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Theorem 4. In all Markov equilibria of any sequential voting rule in the family

F , candidate w is the winner in any subgame with remaining candidates C only if

w ∈ T C(C).

Theorem 4 is clearly a generalization of Theorem 3, but we choose this exposi-

tion for ease of presentation. For binary voting trees (see footnote 12), McKelvey

and Niemi (1978) also obtain outcomes in the top cycle. McKelvey and Niemi’s

equilibrium, that they call multistage sophisticated solution, is similar in spirit to

Farquharson’s (1969) sophisticated solution: presenting the voting game as a tree

of binary choices and treating each decision node with its specific binary choices as

a constituent game, McKelvey and Niemi solve recursively the various constituent

stage games backwards using elimination of weakly dominated strategies. Our se-

quential, one-by-one elimination voting family is inherently different from the class

of binary voting games (with the exception of sequential binary voting) studied by

McKelvey and Niemi. In particular, in our framework with more than two remain-

ing candidates voters may have (and often do have) more than two choices, which

makes the backwards induction type reasoning of binary voting (based on iterative

deletion of dominated strategies) problematic.28 Furthermore, binary voting pro-

cedures may involve multiple candidates being eliminated in a single stage and it

can even happen that the ultimate winner is determined in the first stage.29

28In binary voting, every decision node involves two choices. As a result working backwards each
voter has a unique dominant choice at each stage and the game can be solved uniquely through
iterative deletion of dominated strategies: At the final decision nodes, with only two choices sincere
voting is the unique dominant choice and thus one can associate each final decision node with its
“sophisticated equivalent” (Shepsle and Weingast, 1984) – the candidate that wins conditional
on reaching that particular subgame; iterating back up the tree, by the same reasoning, voters
again have two choices over two sophisticated equivalents and voting sincerely over these choices
is dominant. Under our general sequential elimination scheme, working backwards and iteratively
deleting dominated strategies does not typically yield a unique choice at each stage because the
choice is not necessarily between two alternatives (sophisticated equivalents). In the case of the
weakest link voting with three candidates, for instance, there are three final decision nodes, each
involving a pairwise vote, so identifying the sophisticated equivalents is not a problem; but then
in the previous (first) stage there is a three-way choice over the sophisticated equivalents and an
individual voter’s best vote choice at this stage depends on the choices of others.

29McKelvey and Niemi do not require the Markov assumption because of the binary nature of
choices at every decision node (as discussed in the previous footnote). The equilibrium in any
continuation game of their binary voting following elimination of the CW is essentially unique.
For more than two choices possible (as in our case), the uniqueness can be guaranteed only by
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5 Single-round and some other voting mechanisms

In this section we look at voting rules that differ from the sequential family F in

two important respects: either (1) the elimination of candidates is not one-by-one,

or (2) the elimination which may even be sequential is through a single ballot, or

both. This complementary class includes all single-round voting, a plurality runoff

rule, the exhaustive ballot method, instant runoff voting, etc. We shall examine

the Condorcet consistency property (or the lack of it) of this complementary class.

First we define a class of single-round voting rules. For any set of candidates K
with cardinality k (as defined in section 3), the set of strategies for a voter is to rank

the k candidates in J different categories for some J such that 1 < J ≤ k subject to

some bounds on the number of candidates in each category. Denote the minimum

and the maximum number of candidates in each category j ≤ J by m(j) and M(j),

respectively. Let Λ be the set of all such J rankings over K. Thus, the strategy for

voter i, denoted by Ri ∈ Λ, is a profile (X1, ..., XJ) with J components such that

it partitions the set K into J non-empty cells X1, ..., XJ and m(j) ≤ |Xj| ≤ M(j).

Since it is a partition it must be the case that
∑

j m(j) ≤ k. From Ri we can also

specify for each x, y ∈ K whether x is ranked strictly above y, denoted by x Pi y,

or y is ranked strictly above x, denoted by y Pi x, or x is ranked the same as y (in

the same category), denoted by x Ii y. For any set of n voters, the one-shot voting

game also specifies the winning candidate as a function of the submitted strategies

of the n voters given by an outcome function fn : Λn → K. A voting rule with k

candidates is then defined by the number of categories, the bounds on the size of

each category and the outcome function.We refer to such a one-shot voting rule by

v(k) = (J, {m(j)}j≤J , {M(j)}j≤J , {fn}n∈N), where N is the set of odd numbers (as

elsewhere, this restriction is made for simplicity).

Rankings Λ can accommodate strict order submissions as in the case of Borda,

Copeland and Simpson rules, or standard voting rules that ask for submission of

candidates of a particular rank such as plurality rule, negative voting etc. (Note

that the rankings induced by the strategies are strict/unique if and only if J = k).

Further, it can accommodate approval voting, which asks voters to partition candi-

dates into 1’s and 0’s. Thus, our one-shot voting game is the most comprehensive

(one-shot) generalization of Moulin’s (1988) scoring rules.30

assuming the Markov property.
30Copeland and Simpson rules and approval voting are not part of scoring rules.
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We shall see that, for any fixed number of candidates k, all single-round voting

games satisfying two intuitive properties, called scale invariance and responsiveness,

are not CC in strategic voting. This will be a strong assertion because the lack of

Condorcet consistency is demonstrated for any fixed k. (The number of voters can

of course vary). The meaning of scale invariance is rather straightforward.

Definition 5. A voting rule v(k) with k candidates is scale invariant if replicating

the set of voters with their submitted strategies by any multiple will not alter the

winner.

Responsiveness is about voter pivotalness. Roughly it requires that for each

voter and any pair of candidates, there is a scenario at which the voter is pivotal in

determining the winner between the two candidates. Before defining responsiveness,

we need to define sincere behavior and Condorcet consistency (in sincere voting) in

the above class of voting games.

We say that a strategy Ri = (X1, ..., XJ) ∈ Λ submitted by voter i is sincere

if X1 = {c1, ..., cm(1)}, X2 = {cm(1)+1, ..., cm(1)+m(2)},...,XJ = {c
P

j<J m(j)+1, ..., ck},
when the true preference ranking of voter i is c1 �i . . . �i ck.31

Finally, for any k, a voting rule v(k) is said to be CC under sincere voting if for

any number of voters and any preference profile over k candidates that admits a

CW, the voting rule v(k) selects the CW whenever the voters’ strategies are sincere.

Definition 6. A voting rule v(k) with k candidates is responsive if it satisfies the

following three conditions for each voter i:

1. For any pair of candidates x and y and any two strategies Ri and R′
i such that

x Pi y and y P ′
i x there exists a profile of strategies R−i by the remaining voters

such that (Ri, R−i) elects x as the winner, and (R′
i, R−i) elects y as the winner.

2. For any ranking j ≤ J and any two strategies Ri = (X1, ..., XJ) and R′
i =

(X ′
1, . . . , X

′
J) such that X ′

` = X` for all ` < j, Xj ⊂ X ′
j and y ∈ X ′

j\Xj for

some candidate y, there exists a profile of strategies R−i by the remaining

voters such that (Ri, R−i) elects some x ∈ Xj as the winner, and (R′
i, R−i)

elects y as the winner.

31Notice that this definition of sincere behavior is same as the standard definition when J = k

(strict submissions are allowed); thus our definition is a generalization of the standard definition
to deal with cases in which the ranking is not strict.
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3. If the voting rule is CC under sincere voting, then (i) the submissions are strict

(J = k);32 and (ii) for any three candidates X = {x, y, z}, there exists a

candidate z in X such that the following holds: for any pair of strategies Ri =

(X1, X2, X3, ..., Xk) and R′
i = (X2, X1, X3, ..., Xk) such that (X1, X2, X3) =

(x, y, z) , there exists a profile of strategies R−i by the remaining voters such

that (Ri, R−i) elects x as the winner, and (R′
i, R−i) elects z as the winner.

Conditions 2 and 3 in the above definition hold trivially for many standard one-

shot voting games. In particular, all scoring rules trivially satisfy condition 2 of

Definition 6. This is because in any such voting game, the number of candidates in

each ranking j of the player is always the same (m(j) = M(j)), whereas condition

2 applies only to voting rules in which this is not the case for some ranking j (more

precisely, note that in condition 2 above | Xj |<| X ′
j |). Also, if a voting rule

is not CC under sincere voting then condition 3 of Definition 6 holds vacuously.

Therefore, since scoring rules as well as approval voting (not part of scoring rules)

and instant runoffs are not CC under sincere voting for any number of candidates

k ≥ 3 (we demonstrate this in the proof of Proposition 3), it follows that they

satisfy condition 3 of Definition 6 trivially.

Theorem 5. For any single-round voting rule v(k) with k candidates, if v(k) sat-

isfies responsiveness and scale invariance then v(k) is not CC.

Proposition 3. Suppose n ≥ k − 1. Then standard one-shot voting rules, in

particular, all scoring rules (including plurality rule, negative voting, Borda rule),

approval voting, the two variants of Instant runoff voting (with and without the

majority top-rank trigger33), Copeland rule and Simpson rule will all satisfy re-

sponsiveness and scale invariance conditions of Theorem 5. Hence none of these

voting rules will be CC.

The proof of Proposition 3 appears in Appendix C.

While failure of Condorcet consistency for specific one-shot voting rule(s) is

perhaps not that surprising,34 to our knowledge there is no general result verifying

32We assume in this case J = k because all voting rules that are CC with respect to sincere
voting are based on strict rankings. This assumption is not necessary for our results but it
simplifies the proofs substantially.

33See footnote 8.
34See Dhillon and Lockwood (2004) in the case of plurality rule, and De Sinopoli et. al. (2006)

for approval voting.
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that Condorcet consistency may fail for most prominent voting rules. (Note that

Theorem 5 is applicable more generally to any one-shot voting rule, not just the

ones stated in Proposition 3.) On the contrary, significant positive results in the

implementation literature would have led one to believe otherwise. However, the

requirement that voting mechanisms be relatively simple somewhat constrains the

mechanisms’ scope in achieving desirable objectives. In this respect, failure of Con-

dorcet consistency for the family of one-shot voting rules is an important result.35

Next we turn to formally establish Theorem 5.

Proof of Theorem 5: Fix any voting rule satisfying the two assumptions of respon-

siveness and invariance. We need to show that for some preference profile admitting

a CW, there exists a Nash equilibrium with weakly undominated strategies such

that a non-Condorcet winner is elected. We will prove the assertion for the case of

K = {c1, c2, ..., ck}, the set of candidates.

We shall first show that for a voter sincere submission of his ranking is never a

weakly dominated strategy. Without any loss of generality assume that voter i has

the preference relation c1 �i c2 �i ... �i ck. Suppose Ri = (X1, ..., XJ) is sincere

and suppose it is dominated by R′
i = (X ′

1, ..., X
′
J). Then we obtain a contradiction

by showing by induction that X ′
j = Xj for all j ≤ J . To show this it is sufficient

to show that for any j ≤ J if either j = 1 or j > 1 and X ′
` = X` for all ` < j then

X ′
j = Xj. We show this in two steps.

Step 1: If x ∈ Xj then x ∈ X ′
j. Suppose not, then, since |Xj| = m(j) and

|X ′
j| ≥ m(j), there exists y ∈ X ′

j such that y 6∈ Xj. Now since either j = 1 or

X ′
` = X` for all ` < j, x ∈ Xj, y 6∈ Xj, x 6∈ X ′

j, and y ∈ X ′
j imply that x Piy, and

y P ′
ix. But then by condition 1 in Definition 6 there exists R−i such that Ri results

in x winning, and R′
i results in y winning, thus contradicting that Ri is dominated

by R′
i (note that since Ri is sincere xPiy implies that i prefers x to y).

Step 2: If y ∈ X ′
j then y ∈ Xj. Suppose not; then since either j = 1 or X ′

` = X`

for all ` < j, it must be that y ∈ X` for some ` > j. But then for every x ∈ Xj,

x Pi y and thus, since Ri is sincere, it must be that i prefers x to y. But then

since by the previous step Xj ⊆ X ′
j, by condition 2 in Definition 6, there exists R−i

35Note that the Condorcet map is Maskin monotonic (1999) on the restricted domain of prefer-
ences where Condorcet winner exists (and will be Maskin monotonic even in unrestricted domains
if one defines social choice rule to select all outcomes when Condorcet winner fails to exist).
Since the Condorcet map also satisfies ‘no veto power,’ it is Nash implementable if one considers
arbitrary, rather than just one-shot voting, mechanisms.

25



such that Ri results in some x ∈ Xj winning, and R′
i results in y winning, thus

contradicting that Ri is dominated by R′
i.

By induction we thus have Ri = R′
i, contradicting that Ri is dominated by R′

i.

Now consider two separate cases.

Case A: The voting rule is not CC with respect to sincere voting.

Consider a set of voters, a given preference profile (�1, ...,�n), and the sincere

strategy profile RN for which Condorcet consistency is violated in sincere voting. By

the arguments above each voter i submitting Ri is not using a dominated strategy.

Consider now a sufficiently large replica of the voting game with every voter with

preference ordering �i submitting Ri (so that the scale invariance of Definition

6 applies) and such that unilateral deviation does not alter the outcome. Then

the corresponding strategy combination is a Nash equilibrium with undominated

strategies yielding a candidate which is not a CW.

Case B: The voting rule is CC in sincere voting.

Consider the first three candidates c1, c2 and c3. Without any loss of generality

assume that c3 is the candidate among the first three candidates that satisfies the

property in condition 3 in Definition 6 (i.e. c3 is in the role of candidate z in

condition 3). Next, let κ = max{κ′ | 3κ′ ≤ n}, where n is the number of voters.

Suppose that the true preference profile of the voters is such that the set of voters

can be partitioned into three sets S1,S2 and S3 as follows: The set S1 consists of

n − 2κ voters and each i ∈ S1 has preferences given by c1 �i c2 �i c3 �i ... �i ck;

the set S2 consists of κ voters and each i ∈ S2 has preferences given by c2 �i c1 �i

c3 �i c4 �i ... �i ck; the set S3 consists of κ voters and each i ∈ S3 has preferences

given by c3 �i c1 �i c2 �i c4 �i ... �i ck. Then note that c1 is the CW and c2 is

the CW among all candidates other than c1. Also, denote the set of voters that

prefer c2 to c3 by S = S1 ∪ S2; clearly, S forms a majority.

Now since the voting rule is CC in sincere voting, by condition 3 in Definition

6, J = k (all rankings are strict). Next consider for any i ∈ S the strategy

Ri = (c2, c1, c3, ..., ck). First we show that for any i ∈ S, Ri is not weakly dominated.

Suppose not; then for some i ∈ S, Ri is weakly dominated by another strategy

R′
i = (X ′

1, ..., X
′
k). Now since Ri is sincere if i ∈ S2 and voting sincerely is not

weakly dominated (see above), it follows that i ∈ S1 and c1 �i c2 �i c3 �i ... �i ck.

Using this, we next establish in several steps that X ′
τ = cτ for all τ ≤ k.

Step 1: We claim that X ′
1 6= cτ for any τ > 2. Suppose not; then by condition

1 in Definition 6 there exists R−i such that Ri results in c2 winning, and R′
i results
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in cτ for some τ > 2 winning, thus contradicting that Ri is dominated by R′
i.

Step 2: We claim that X ′
1 = c1. Suppose not; then by the previous step X ′

1 = c2.

But then since Ri = (c2, c1, c3, ..., ck) and c1 �i c3 �i ... �i ck by induction it follows

that R′
i = Ri (use the same induction reasoning as that in the proof of voting

sincerely is not dominated). But this is a contradiction.

Step 3: We claim that for X ′
j = cj for all j ≤ J . Since by the previous step

the claim is true for j = 1, by induction, it suffices to show that for any j ≤ J , if

X ′
j′ = cj′

for all j′ < j, then X ′
j = cj. To show this suppose contrary to the claim

that X ′
j′ = cj′

for all j′ < j and X ′
j 6= cj. Then X ′

j = cτ for some τ > j. This

implies, by condition 1 in Definition 6, that there exists R−i such that Ri results

in either c1 (if j = 2) or cj (if j > 2) winning, and R′
i results in cτ . Since i prefers

both c1 and cj to cτ (τ > j), this contradicts Ri being dominated by R′
i.

Now since Ri = (c2, c1, c3, ..., ck) and R′
i = (c1, c2, c3, ..., ck), by condition 3 in

Definition 6, there exists a strategy profile R−i such that (R′
i, R−i) elects c3 whereas

(Ri, R−i) elects c2. Since c3 is worse than c2 in i’s true ranking, R′
i cannot weakly

dominate Ri. But this is a contradiction. Hence Ri is not weakly dominated.

Now consider any strategy combination RN in which every i ∈ S submits the

strategy Ri, and the rest of the voters submit any undominated strategies (e.g. they

vote sincerely by submitting (c3, c1, c2, c4, ..., ck)). We next show that such a profile

results in c2 being elected. Consider any preference profile �′= (�′
1, ...,�′

n) such

that c2 �′
i c1 �′

i c3 �′
i ... �′

i ck for every i ∈ S and Ri′ is sincere with respect to

�′
i′ for every i′ ∈ N\S. Clearly, RN is sincere with respect to �′. Moreover, since

�′ is such that c2 is the most preferred for every i ∈ S and the set S constitutes a

majority, it follows that c2 is the CW with respect to �′. Hence, since the voting

rule is, by assumption, CC in sincere voting and RN is sincere with respect to �′,

it follows that c2 must be elected when the voters submit RN .

Now assume that n > 5 and RN is chosen. Then no individual voter can affect

the outcome because for any single deviation there are at least n − 2κ + κ − 1 =

n − k − 1 ≥ 2κ − 1 voters (the numbers of S1 and S2 minus 1) who put c2 first.

Since 2κ − 1 forms a majority if n > 5 and the voting rule is CC with respect to

sincere voting, it follows that c2 is still elected if any single voter deviates. Thus

the strategy profile RN is a Nash equilibrium with undominated strategies, yielding

the candidate c2. But c1 is the CW with respect to the true preferences. Q.E.D.

Remark. The use of ‘Replica invariance’ in the above proof is mainly to bring
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under a single theorem all the standard voting rules. However, it is not that difficult

to construct counter-examples specific to each of the voting rules in Proposition 3

that involve only a small number of voters.

So far in this section we have considered only single-round voting rules that

rank candidates. Next we consider voting rules that do not belong to either the

above class of single-round voting or the sequential (elimination) family of section

4. Obviously one can think of many voting rules that come under a third comple-

mentary group. We are not going to make any general observation here. Instead,

we present two voting rules in Proposition 4 and a third voting rule in Proposition

5 (see sections 1 and 2 for more complete descriptions of these rules) to indicate

why both one-by-one elimination and repeated ballots are potentially important for

Condorcet consistency: the plurality runoff rule and the exhaustive ballot method,

sharing features of weakest link voting, both use multiple ballots but fail one-by-one

elimination; a one-shot version of the weakest link voting eliminate candidates one-

by-one but fail repeated ballots (and likewise for the instant runoff voting without

the majority top-rank trigger – see Proposition 3). Of these voting rules, plurality

runoff and exhaustive ballot are used in various political appointments. (Proofs of

Propositions 4 and 5 appear in the Supplementary material.)

Proposition 4. Both the plurality runoff rule and the exhaustive ballot method are

not CC.

An intuition on why elimination of more than one candidate in some round

may lead to a non-Condorcet outcome would be instructive. The basic idea is that

with one-by-one elimination, when the CW is eliminated in some voting round the

(off-equilibrium) outcome is unique in the induction argument. When more than

one candidate are eliminated, following the CW ’s elimination the outcome is not

necessarily unique – it depends on who else is being eliminated along with the CW ;

as a result, in this case, the voters may not vote for the CW in order to influence

the final outcome in the case when the CW is eliminated.

Proposition 5. The one-shot weakest link voting (with voters submitting their

entire weakest link strategies once-for-all in a single round followed by one-by-one

eliminations) is not CC.

In Theorem 5 and Propositions 3-5 we have shown that most standard voting

rules are not CC due to miscoordination of voter strategies. The problem can
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be worse when there is no CW, as these voting rules, in contrast to the class

of sequential elimination in the previous section (see Theorem 4), may not even

select a member of the top cycle. We shall next provide an intuition for such

possibilities by providing examples of winning candidate outside the top cycle set

in the context of plurality rule and plurality runoff voting (plurality and plurality

runoff are respectively typical examples of one-shot voting and multi-round voting

without one-by-one elimination).

Consider the case of five voters and six alternatives with the following prefer-

ences: type 1: a, b, c, d, e, f (two voters); type 2: b, c, a, e, d, f (two voters) ; type

3: c, a, b, d, e, f (one voter). Assume further that the tie-breaker is such that e is

eliminated last and d second last. Clearly, d is outside the top cycle. In the case of

plurality rule, voting for d by each voter is an equilibrium outcome (that is, Nash

and undominated) because d is not lowest in any one’s ranking (Dhillon and Lock-

wood, 2004). In the case of the plurality runoff it can be checked that the following

strategies will be an equilibrium: in the second stage voters vote sincerely; in the

first stage two type 1 voters vote for d, two type 2 voters vote for e, and the type

3 voter votes for d. Thus, in both voting rules, the alternative d will be the winner

in an equilibrium.

6 Conclusion and further remarks

A common concern in the voting literature is that often votes are wasted in the

sense that a sizeable proportion of the electorate vote for a candidate who later on

are found out to be far below the top few candidates. It is also widely acknowledged

that one-shot voting rules are more likely to suffer from this deficiency – there is

no second or fall back option for those who back a loser.

Repeated ballots seem to be a reasonable answer to this drawback of one-shot

rules. In this paper we show that, in fact, repeated ballots with one-by-one elimi-

nation are an integral part of any voting mechanism when some popular candidate

is to be elected. For a suitable choice of a popular candidate, our focus in this

paper has been on CW when such an alternative exists. When there is no CW,

our sequential voting still has the desirable property that the winner belongs to the

top cycle set (a familiar bound for voting equilibria in other contexts; see sect. 3

of Dutta, Jackson and Le Breton, 2002). Despite this positive aspect, it is still the
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case that when there is no CW our proposed voting rules may allow for a broad

range of outcomes (the top cycle set may be too large). In particular, given its

diverse domain, it is to be expected that the voting rules from the sequential family

will exhibit differing characteristics in respect of other social choice criteria like

Pareto efficiency, ‘neutrality’ (voting outcomes be independent of the identity of

candidates), etc.36 A voting rule may satisfy one criterion and not the other. For

instance, sequential binary voting (where votes are taken over pairs of candidates

arranged in a specific order), a popular member of the voting family F , is known

to be Pareto efficient whereas weakest link voting may fail Pareto efficiency, as we

show in an example with four candidates in the Supplementary material.37,38 On

the other hand, sequential binary voting is not neutral because the equilibrium out-

come depends on the order of agendas when there is no CW (anyone with a power

to choose agendas can significantly influence the outcome), whereas the weakest

link voting (as well as sequential Borda, approval voting and other examples of the

voting family F considered in this paper), are neutral up to the tie-breaking rule; in

fact if we allow expected utility (i.e., cardinal preferences unique up to affine trans-

formation) and random tie-breaking rule (with equal probabilities of eliminations

for the tied candidates), these voting rules are fully neutral.

Our broad purpose here, however, is not to argue for or against specific sequen-

tial voting rules. Instead, the important point that we like to emphasize in this

paper is that Condorcet consistency, and more generally top cycle, is a general

property of a broad class of sequential elimination voting, which is not shared by

one-shot or any of the familiar semi-sequential voting rules.

Finally, our interest in CC voting rules is also borne out of the fact that voting

mechanisms seem to be the most natural and decentralized way of reaching collec-

tive decisions. Substantial research in the important literature on implementation

theory investigate questions of how to achieve desirable social objectives including

Condorcet outcomes and often employ abstract/general mechanisms. Our focus on

voting mechanisms, rather than general mechanisms, thus differ from this tradition.

36The issue of Pareto efficiency has been explored in Dutta and Pattanaik (1985) and Moulin
(1980; 1988).

37Obviously, for such a result to occur it must be that the voter preferences do not admit a
CW ; CW, when it exists, is Pareto efficient.

38For three candidates all sequential elimination rules are Pareto efficient, given that top cycle
coincides with the uncovered set (see Moulin, 1988). Note also that in one-shot voting games,
Pareto efficiency is not even guaranteed for three candidates case.
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Appendix A

Existence of a Markov equilibrium for the weakest link
voting when n ≥ 2k − 1.

To prove existence we need to show that there exists a Markov strategy profile

s∗ such that at each stage it is Nash and undominated assuming that all players

play according to s∗ in any later stages. This is done by defining s∗ inductively in

subgames with a given number of candidates as the inductive variable, as follows.

First, let k(h) denote the number of candidates at h. Then at any h with

k(h) = 2, assume that voter i chooses sincerely. Clearly such a strategy profile is

an undominated Nash equilibrium in this last stage and is independent of h.

Induction hypothesis. Now suppose for all h′ such that k(h′) ≤ J − 1, s∗(h′)

is defined, and is undominated Nash and Markov39 from here onwards.

We need to define a profile of choices for all voters s∗(h), for all h such that

k(h) = J , such that s∗(h) is an undominated Nash equilibrium and Markov from

here onwards, assuming that all follow s∗(h′) at all later stages h′ s.t. k(h′) ≤ J−1.

Fix any h s.t. k(h) = J . Let C = {c1, ..., cJ} be the set of candidates at h.

Without any loss of generality assume that cj′
is higher in the tie-breaking rule

than cj (i.e., if at all, cj is eliminated before eliminating cj′
) if and only if j′ < j.

Also let σ(c) be the winner if c is eliminated at the start of play of the subgame

Γ(h). Notice that σ(c) is unique because by the induction hypothesis s∗(h), when

there are J − 1 candidates, is independent of the past history.

Next define, for any i ∈ N ,

Mi =

{
Θi if ∃c and c′ ∈ C s.t. σ(c) 6= σ(c′);

∅ otherwise.

where Θi = {c ∈ C | @c′ ∈ C s.t. σ(c′) �i σ(c)} consists of voter i’s best elimination

candidate(s) in this round of play. Note that Mi is empty-valued when the subgame

is degenerate (the identity of the eventual winner is independent of who is eliminated

at this round). Finally, let M c
i = C\Mi. Clearly, M c

i 6= ∅.

Lemma 1. In the subgame Γ̂(h), any c ∈ M c
i is not weakly dominated for voter i.

39That is, the strategies depend only on the candidates around and not on the precise history
leading up to it.
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Proof of Lemma 1. Suppose Mi 6= ∅ (if Mi = ∅, Lemma 1 holds trivially). Fix

c ∈ M c
i and any c′ ∈ C, c′ 6= c. We want to argue that switching his vote from c to

c′ would be worse for voter i for at least one profile of other voters’ votes.

If the tie-breaker places some ĉ ∈ Mi ahead of c and ĉ 6= c′, let the distribution

of votes of all the voters other than i be as follows:

ϑ(ĉ) = ϑ(c) = 0 and ϑ(c̃) > 0, ∀c̃ 6= ĉ, c,

where ϑ(·) denotes the number of votes in favor of a candidate by all voters other

than i. Now if i votes for c then the distribution of votes as above leads to the

elimination of ĉ. However, if i switches to c′ while the rest stay with their votes as

above, candidates ĉ and c will be tied with minimal votes and by the tie-breaker c

will be eliminated, which is worse for voter i. If ĉ = c′, the argument holds with

even greater force as c would be eliminated (as i switches to c′) without having to

invoke the tie-breaker.

If the tie-breaker is such that c is placed ahead of all ĉ ∈ Mi, let the distribution

of votes of all the voters other than i be as follows:

ϑ(c) = 0, ϑ(ĉ) = 1 ∀ ĉ ∈ Mi, and ϑ(c̃) ≥ 2 ∀c̃ 6= c, c̃ ∈ M c
i .

Now if i votes for c then this leads to the elimination of some ĉ. However, if

i switches to c′ while the rest stay with their votes as above, c will be unique

with minimal votes and therefore be eliminated, which is worse for voter i. This

completes the proof of Lemma 1. ||

Next for any r = 1, ..., J we define the following property.

Definition 7. Any r ∈ {2, ..., J} satisfies property α if there exists a set of voters

Ω = (u1, v1, u2, v2, ..., ur−1, vr−1) consisting of 2(r − 1) different voters such that

cj ∈ M c
i for i = uj, vj for all j < r. (5)

Lemma 2. Suppose that the following two conditions hold for some 1 ≤ r < J : (i)

either r = 1 or r satisfies property α; and (ii) r + 1 does not satisfy property α.

Then there exist a choice profile s∗(h) that is Nash, is not weakly dominated, and

is Markov.
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Proof of Lemma 2. Given that r satisfies (i) and (ii) above, there exists a set of vot-

ers Ω (that is empty if r = 1) consisting of 2(r−1) different voters (u1, v1, u2, v2, ..., ur−1, vr−1) ⊂
N such that

cj ∈ M c
i for i = uj, vj for all j < r (6)

and there exists a set of voters V ⊂ N\Ω such that

| V |= n− 2(r − 1)− 1 (7)

and

cr ∈ Mv for any v ∈ V. (8)

Let

Cr = {c ∈ C |σ(c) = σ(cr)} and C
r

= {C\Cr} ∩ {cr+1, ..., cJ}.

Since the preferences of each voter is strict, it follows that

C
r ⊂ M c

v for any v ∈ V. (9)

Also since | V |= n − 2(r − 1) − 1, | C
r |≤ J − r and by assumption n ≥

2k − 1 ≥ 2J − 1 and r < J , it follows that the number of voters in V is at least

twice the number of candidates in C
r
. But this implies that there exists a choice

profile {s∗v(h)}v∈V such that

s∗v(h) ∈ C
r

for each v ∈ V, (10)

|{v ∈ V |s∗v(h) = c}| ≥ 2 for each c ∈ C
r
. (11)

(The second condition says that each candidate c ∈ C
r

receive at least two votes).

Next set the choice s∗i (h) of each i ∈ Ω to be such that

s∗i (h) = cj for i = uj, vj. (12)

Finally, denote the remaining voter N\{V ∪ Ω} by x and set the choice of voter x

to be such that
s∗x(h) ∈ M c

x\cr if M c
x\cr is not empty;

s∗x(h) = cr otherwise.
(13)

Now by Lemma 1 and conditions (6), (9), (10), (12) and (13), the choice s∗`(h)

is undominated in this round for any voter ` ∈ N and is Markov.40 Next we show

that s∗(h) = {s∗`(h)}`∈N is Nash. There are two possible cases.

40If M c
x\cr is an empty set then cr must be an element of M c

x because M c
x 6= ∅. Thus, s∗x(h) is

undominated.
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Case A. M c
x 6= cr. First, note that by (11) and (12), in this round each

candidate c ∈ C
r ∪ {c1, ..., cr−1} receives at least two votes, cr receives zero vote

(follows from (13), given the fact that M c
x 6= ∅ and M c

x 6= cr), and any other

c′ ∈ Cr ∩{cr+1, . . . , cJ} receives at most one vote. This means that some candidate

c ∈ Cr is eliminated and σ(cr) will be the final winner. Moreover, since cr receives

zero vote, it must be that the eliminated candidate ce ∈ Cr receives zero vote and

e ≥ r.

Since, by (8), σ(cr) is a best outcome for each v ∈ V , it follows that s∗v(h) is a

best choice for any v ∈ V . Moreover, no voter i ∈ Ω can change the final outcome

σ(cr) by changing its action because the choice s∗i (h) ∈ {c1, ..., cr−1} receives at

least two votes, the eliminated candidate ce has zero vote and e ≥ r. Finally, voter

x cannot change the final outcome σ(cr) by changing its action because either the

choice s∗x(h) ∈ {c1, ..., cr−1} ∪ C
r
, in which case s∗x(h) receives at least three votes

and as before ce has zero vote, or s∗x(h) ∈ Cr ∩ {cr+1, . . . , cJ} in which case s∗x(h)

receives one vote and any deviation results in some candidate in the set Cr to be

eliminated.

Case B. M c
x = cr. Then for each c′ 6= cr, c′ ∈ Mx. Therefore

∀c′, c′′ 6= cr, σ(c′) = σ(c′′). (14)

This implies that C
r

= {cr+1, ..., cJ}. But then, by (11) and (12), in this round

each candidate c 6= cr receives at least two votes, cr receives one vote (the vote of

x), cr is eliminated and σ(cr) will be the final winner. As in the previous case, since

this is a best outcome for each v ∈ V it follows that s∗v(h) is a best choice for any

v ∈ V . Next note that for each voter i = uj, vj for j < r we have s∗i (h) = cj ∈ M c
i

and thus cr ∈ Mi. Therefore, eliminating cr is also the best outcome for any i ∈ Ω.

Finally, note that voter x cannot change the final outcome σ(cr) by changing its

action because every c 6= cr receives two votes. ||

Lemma 3. Suppose that J satisfies property α. Then there exist a choice profile

s∗(h) that is Nash, is not weakly dominated, and is Markov.

Proof of Lemma 3. Given that J satisfies property α, there exists a set of voters

Ω = (u1, v1, u2, v2, ..., uJ−1, vJ−1) consisting of 2(J − 1) different voters such that

cj ∈ M c
i for i = uj, vj for all j < J. (15)
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Set the choice profile {s∗i (h)}i∈Ω to be such that

s∗i (h) = cj if i = uj, vj. (16)

Also partition the remaining voters as follows:

ΓJ =
{
v ∈ N\Ω|M c

v = cJ
}

Γ
J

=
{
v ∈ N\Ω|M c

v 6= cJ
}

.

Let the choice profile {s∗v(h)}v∈N\Ω be such that

(i) s∗v(h) ∈

{
cJ if v ∈ ΓJ

M c
v\cJ if v ∈ Γ

J
;

(ii) if ΓJ is non-empty,

|n(c)− n(c′)| ≤ 1 ∀c, c′ 6= cJ s.t. σ(c) = σ(c′), (17)

where

n(c) = |{v ∈ N |s∗v(h) = c}| for any c.

(Note that M c
v\cJ 6= ∅ for v ∈ Γ

J
.) Notice that if ΓJ is non-empty, (17) is possible

for the following reasons. First, since Γj is non-empty,

∀c′, c′′ 6= cJ , σ(c′) = σ(c′′) 6= σ(cJ). (18)

Next note that each cj, j < J receives two votes from the set of voters Ω. The only

other voters that vote for the candidates cj, j < J are from the set Γ
J
. Because

ΓJ is non-empty it follows from (18) that for each v ∈ ΓJ , Mv = {c1, . . . , cJ−1};
therefore votes by the members of Γ

J
can be arranged so that (17) is satisfied: the

first member of Γ
J

votes for c1, the second for c2 etc. until the (J − 1)st member

votes for cJ−1, the J-th member for c1, (J + 1)st for c2 etc.

By Lemma 1, s∗(h) is not weakly dominated. Also by definition, s∗(h) is Markov.

Next we show that it is a Nash equilibrium.

Case A. ΓJ is empty. Then every c 6= cJ receives at least two votes, cJ receives

no votes and is eliminated. This together with cJ having the lowest rank in the

tie-breaking rule imply that no player can change the final outcome by changing

their choices and thus s∗(h) constitutes a Nash equilibrium.

35



Case B. ΓJ is non-empty. By (18), since for each v 6∈ ΓJ there exists a c 6= cJ

such that c ∈ M c
v , it follows that

∀v 6∈ ΓJ , cJ ∈ Mv. (19)

Now there are two possibilities.

Subcase 1: Candidate cJ is eliminated. Then, by (19), this is the best outcome

for any v 6∈ ΓJ and therefore, each such v is choosing his optimal action. Moreover,

each v ∈ ΓJ cannot change the outcome by deviating from s∗v(h) because s∗v(h) = cJ

and cJ is the candidate that is eliminated.

Subcase 2: Some c 6= cJ is eliminated. Then, by the tie-breaking rule

n(c) < n(cJ). (20)

Next note that by (18) and the definition of ΓJ , this is the best outcome for any

v ∈ ΓJ and therefore, each such v is choosing his optimal action. Next we show

that no voter v 6∈ ΓJ can change the outcome by deviating. Suppose not; then

some voter v 6∈ ΓJ can deviate from s∗v(h) = cj(6= c) for some j < J and change the

final outcome σ(c) by voting for another candidate. Since the outcome is changed,

by (18), it must be that cJ is eliminated. This implies that

n(cj)− 1 ≥ n(cJ).

But this together with (20) imply that

n(cj) > n(c) + 1

But this contradicts condition (17). Therefore no v 6∈ ΓJ can change the final

outcome by deviating. ||

The last two lemmas together establish that there exists a choice profile s∗(h)

that is Nash, not weakly dominated, and is Markov. Q.E.D.

Appendix B
Justifying the use of Markov strategies.

Recall, Si is the strategy set of voter i with si : H → ∪C,jAi(C, j) s.t. si(h) ∈
Ai(C, j) ∀h ∈ Hj

C , where Hj
C = HC ∩Hj. Also, let S = ΠiSi.
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Definition 8. A strategy si ∈ Si is more complex than another strategy s′i ∈ Si if

∃C and j s.t.

(i) si(h) = s′i(h) ∀h 6∈ Hj
C ;

(ii) s′i(h) = s′i(h
′) ∀h, h′ ∈ Hj

C ;

(iii) si(h) 6= si(h
′) for some h, h′ ∈ Hj

C .

The above ordering of complexity is only a partial ordering. Nevertheless, it

will prove a powerful one for our purpose. Based on this ordering, let us refine our

earlier definition of equilibrium as follows.

Definition 9. A equilibrium strategy profile s∗ ∈ S will be called a simple equilibrium

if for any i ∈ N

6 ∃si ∈ Si s.t. w(si, s
∗
−i) = w(s∗i , s

∗
−i) and s∗i is more complex than si, (21)

where w (s) is the winner if profile s is adopted.

Note that while the definition of simple equilibrium allows history-dependent

(i.e., non-Markov) strategies, the condition in (21) reflects the implicit assumption

that the voters are averse to complexity unless it helps to change the final outcome.

Thus, simplicity of the simple equilibrium is a very weak, and in our view plausi-

ble, requirement for any descriptive analysis. We can therefore use the simplicity

criterion for equilibrium selection.

Theorem 6. Any simple equilibrium is also a Markov equilibrium.

Proof. Suppose s∗ ∈ S is a simple equilibrium but not a Markov equilibrium. Then

there exists some i, C, j and h, h′ ∈ Hj
C s.t. s∗i (h) 6= s∗i (h

′). Clearly, if Hj
C ∩ E 6= ∅

where E is the equilibrium path corresponding to the simple equilibrium s∗, then

Hj
C ∩ E is unique; that is, C happens on the equilibrium path at stage j at most

once. Now consider another strategy si ∈ Si s.t.

si(h) = s∗i (h) ∀h 6∈ Hj
C ;

∀h ∈ HC , si(h) =

{
s∗i (H

j
C ∩ E)

ai ∈ C

if Hj
C ∩ E 6= ∅,

if Hj
C ∩ E = ∅,

where ai denotes any arbitrary element of C (note that si is well-defined because

Hj
C ∩ E is unique when defined).
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It is easy to see that si is simpler than s∗i . Moreover, because si differs from

s∗i only possibly for histories in Hj
C that are off-the-equilibrium path, (si, s

∗
−i) will

result in the same winner as the equilibrium s∗, so that wi(si, s
∗
−i) = wi(s

∗
i , s

∗
−i).

Hence, s∗ cannot be a simple equilibrium – a contradiction. Q.E.D.

Appendix C

Proof of Proposition 1 : Fix a stage with the set of remaining candidates C

having the cardinality J . Also, fix a candidate c ∈ C and a majority φ.

For any voter i, let Dc
i (C, j) be the set of all strategies that place c at the

top (with no other restriction on the positions of other candidates).41 Also, let

Dc
φ(C, j) = Πi∈φDc

i (C, j).

First we verify condition [i]. Fix any a ∈ A(C, j) such that aφ ∈ Dc
φ(C, j). We

need to show that e(a, C) 6= c.

For any x ∈ C and any a′ ∈ A(C, j), denote the total score of candidate x at

this stage when action profile a′ is chosen by TS(x, a′).

Next, define θtop to be the total score of a candidate if he receives the highest

score, ςJ , from a majority of (n+1)/2 voters and gets the lowest score, ς1, from the

remaining n− (n + 1)/2 voters:

θtop =
(n + 1)

2
ςJ + [n− (n + 1)

2
]ς1.

Since a is such that the majority φ place c at the top, it follows that TS(c, a) ≥ θtop.

Therefore, the average score that the other candidates receive when a is chosen

cannot exceed

θmin =
n[ςJ + . . . + ς1]− θtop

J − 1
.

But then there must exist a candidate d ∈ C such that TS(d, a) ≤ θmin. Now to

complete verification of condition [i], it suffices to show that θtop−θmin > 0. Note

41Proposition 2 proof, omitted, will follow a similar argument as in the rest of Proposition 1
proof. For sequential extension of approval voting, Dc

i (C, j) will consist of the unique strategy of
voter i approving only candidate c and disapproving all the remaining candidates. For sequential
extensions of Copeland and Simpson rules – given that these rules are based on strict order
submissions – Dc

i (C, j) will place only candidate c at the top.
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that

(J − 1)(θtop − θmin) = J · θtop − n

J∑
`=1

ς`

=
(J − 2)n + J

2
ςJ +

(J − 2)n− J

2
ς1 − n

J−1∑
`=2

ς`.

Therefore, θtop − θmin > 0 ⇔ 1

2
(ςJ + ς1) +

J

2n(J − 2)
(ςJ − ς1) >

1

(J − 2)

J−1∑
`=2

ς`.

But since, by assumption, 1
2
(ςJ +ς1) ≥ 1

(J−2)

∑J−1
`=2 ς` and ςJ > ς1, condition [i] must

hold. ||

Next, we verify condition [ii]. Fix a ∈ A(C, j) such that aφ 6∈ Dc
φ(C, j) and

e(a, C) = c. For any i, let mi be a candidate to whom i attaches the highest score

ςJ : ai(m
i) = ςJ .

Without loss of generality denote the set of voters in the φ-majority by {1, 2, . . . , |φ|}.
Next, consider the sequence of vote profiles, a(0), a(1), . . . , a(|φ|), defined as follows:

a(0) = a and for any i and ` such that 1 ≤ i, ` ≤ |φ|,

a
(i)
` (x) =


ςJ if x = c and ` ≤ i

a`(c) if x = m` and ` ≤ i

a`(x) otherwise.

Note that a(|φ|) is such that a
(|φ|)
i (c) = ςJ for all i ∈ φ. Therefore, a

(|φ|)
φ ∈ Dc

φ(C, j)

and hence, by condition [i], e(a(|φ|), C) 6= c. Moreover, by assumption e(a(0), C) = c.

Therefore, there exists some i, 1 ≤ i ≤ |φ|, such that

e(a(i−1), C) = c and e(a(i), C) 6= c.

Furthermore, by the definition of the sequence a(0), a(1), . . . , a(|φ|) we have that

a
(i−1)
i = ai and a

(i−1)
−i = a

(i)
−i. Therefore, we have e(ai, a

(i−1)
−i , C) = c and e(a

(i)
i , a

(i−1)
−i , C) 6=

c verifying (3) in condition [ii].

To verify (2), for ai(= a
(i−1)
i ) and a

(i)
i note that a

(i)
i (c) = ςJ , a

(i)
i (mi) = ai(c) and

a
(i)
i (x) = ai(x) for all x 6= c. Thus, for any a−i ∈ A−i(C, j) we have TS(c, a

(i)
i , a−i) ≥

TS(c, ai, a−i), TS(mi, a
(i)
i , a−i) ≤ TS(mi, ai, a−i) and TS(x, a

(i)
i , a−i) = TS(c, ai, a−i)

for all x 6= c. But this implies that if e(ai, a−i, C) 6= c then e(a
(i)
i , a−i, C) 6= c for all

a−i ∈ A−i(C, j), hence verifying (2). Q.E.D.
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Proof of Theorem 4 : We use induction on the number of remaining candidates.

Suppose C consists of two candidates. Then the result is true by Theorem 3.

Now assume the following hypothesis: Theorem 4 is true for any subgame with j

candidates.

We want to show that the result is also true for any subgame with j+1 remaining

candidates. Suppose not. Then there is a subgame Γ at stage k− j with remaining

candidates C of cardinality j+1 such that w is the ultimate winner and w 6∈ T C(C).

This implies there exists some y ∈ C such that

y T w and it is not the case that w T x1 T x2 T . . . T x` T y, (22)

for some x1, x2, ..., x` ∈ C.

Next we establish two intermediate claims.

Claim 1: y must be the first eliminated candidate in the subgame Γ.

If not, let y′ 6= y be the candidate eliminated at this stage. Then in this subgame

the remaining candidate set is C \ y′ and w wins, which implies by hypothesis

w ∈ T C(C \ y′). But then there will be a (direct or an indirect) chain such that

w T x1 T x2 T . . . T x` T y, contradicting (22). ||

Claim 2: y is the ultimate winner in any subgame at stage k − j with remaining

candidates C if y is not the first eliminated candidate in this subgame.

Let a 6= y be the candidate that is eliminated first. Denote the winner after (a

is eliminated) by ŵ.

First note that, y ∈ C \ a implies that w 6∈ T C(C \ a), and hence by hypothesis

ŵ 6= w.

Now suppose Claim 2 is false; then ŵ 6= y. Since ŵ ∈ T C(C \ a), it must then

be that

ŵ T . . . T y. (23)

Also, since by Claim 1 and hypothesis w ∈ T C(C \ y), and ŵ 6= w (as established

above), it must be that

w T . . . T ŵ. (24)

Now (23) and (24) together imply

w T . . . T ŵ T . . . T y,
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but this contradicts (22). So Claim 2 must be true. ||

The rest of the proof is the same as in the case of having a CW, as follows. In the

subgame with remaining candidates C, consider any voter i such that y �i w; there

will be a majority of such voters because y T w. Denote these majority voters by φ.

By condition [i] of the MNE-property, there exist vote profiles aφ ∈ Dy
φ(C, k − j)

such that e(aφ, a−φ, C) 6= y, ∀a−φ ∈ Π` 6∈φA`(C, k − j). Then since by Claim 1

y must be the first eliminated candidate in the subgame Γ, it must be that the

majority φ chose some vote profile ãφ 6∈ Dy
φ(C, k− j). But then by condition [ii] of

the MNE-property, there is some voter i ∈ φ whose vote choice ãi (corresponding

to the profile ãφ) is “inferior” to some other vote choice ay
i (as defined in condition

[ii] of the MNE-property in section 4.2) in protecting y. But then we have a

contradiction because then for such i voting for ay
i weakly dominates voting for ãi:

either y is eliminated in which case, by claim 1, w wins; or there is at least one vote

profile a′−i by the remaining voters such that e(ay
i , a−i, C) 6= y (by (3) in condition

[ii]) and, by claim 2, y will be the ultimate winner (the details of this argument is

similar to that in Theorem 3). Thus, w 6∈ T C(C) cannot be the winner. Q.E.D.

Proof of Proposition 3 : We prove that the voting rules considered satisfy the

three conditions in Definition 6 separately.

Condition 1

To show this, fix any x and y and any two strategies Ri = (X1, ..., XJ) and

R′
i = (X ′

1, ..., X
′
J) such that x ∈ Xτ , y ∈ Xτ ′ and τ < τ ′, so that x Pi y. Suppose

also x ∈ X ′
ν , y ∈ X ′

ν′ and ν ′ < ν, so that y P ′
i x. Also, let m = (n−1)/2 and consider

the set of voters other than i. Enumerate this set (we are assuming an odd number

of voters) and denote the enumeration by {α1, ..., α2m}, with a typical voter denoted

as α`. Also enumerate the candidates other than x, y as {c1, c2, . . . , ck−2}.
Next, for any voter α` consider any strategy Rα`

= (X̂1, ..., X̂J) satisfying42

x ∈

{
X̂1 if either ` ≤ m or M(1) > 1

X̂2 if ` > m and M(1) = 1

y ∈

{
X̂1 if either ` > m or M(1) > 1

X̂2 if ` ≤ m and M(1) = 1

and cr ∈ X̂J for voter αr, 1 ≤ r ≤ k − 2.

Thus, each of the candidates other than x and y is placed in at least one voter’s

42One should index the cells to reflect individualistic voting, but we keep to minimal notations.
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lowest-ranked cell. This is possible because there are k − 2 such candidates and

k − 2 ≤ 2m (by assumption k − 1 ≤ n).

Next, consider the different voting rules under consideration.

Scoring rules and Approval Voting: Denote the score attached to the j-th

cell in either of the two voting rules by ςJ−j+1. Also, denote respectively the total

score that any candidate c receives for strategy profile (Ri, R−i) and (R′
i, R−i) by

TS(c, Ri, R−i) and TS(c, R′
i, R−i). Then it follows from the definition of R−i above

that:
TS(x, Ri, R−i) = mςJ + mγ + ςJ−τ+1

TS(y, Ri, R−i) = mςJ + mγ + ςJ−τ ′+1

TS(cr, Ri, R−i) ≤ ςJ + (2m− 1)γ + ς1, 1 ≤ r ≤ k − 2,

 (25)

where γ =

{
ςJ if M(1) > 1

ςJ−1 if M(1) = 1.

Therefore, it follows from (25) and ςJ−τ+1 > ςJ−τ ′+1 ≥ ς1 that TS(x, Ri, R−i) −
TS(y, Ri, R−i) > 0, and TS(x, Ri, R−i)− TS(cr, Ri, R−i) > 0. Therefore, (Ri, R−i)

results in x being elected.

Also, it follows from the definition of R−i above that:

TS(x, R′
i, R−i) = mςJ + mγ + ςJ−ν+1

TS(y, R′
i, R−i) = mςJ + mγ + ςJ−ν′+1

TS(cr, R′
i, R−i) ≤ ςJ + (2m− 1)γ + ς1, 1 ≤ r ≤ k − 2.

But this together with ςJ−ν′+1 > ςJ−ν+1 ≥ ς1 imply that TS(y, R′
i, R−i)−TS(x, R′

i, R−i) ≥
ςJ−ν′+1−ςJ−ν+1 > 0, and TS(y, R′

i, R−i)−TS(cr, R′
i, R−i) ≥ ςJ−ν′+1−ς1 > 0. Thus,

(R′
i, R−i) results in y being elected.

Instant runoff voting (with and without the majority top-rank trig-

ger). For both variants of instant runoff voting, the strategy profile (Ri, R−i)

described above results in candidate x having the highest number of votes at each

round and therefore in x being elected, and the strategy profile (R′
i, R−i) described

above results in candidate y having the highest number of votes at each round and

therefore in y being elected (this follows from the same reasoning as in the previous

case with scoring rules and approval voting).

Copeland rule. To calculate Copeland scores for (Ri, R−i) submissions, let us

do binary comparisons: comparing x against any other candidate yields x each time

a score of +1, thus the Copeland score of x is k − 1. Since k − 1 is the maximum
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possible Copeland score, it follows that (Ri, R−i) results in x being the winner.

By the same reasoning, the Copeland score of y when (R′
i, R−i) is chosen is k − 1;

therefore in this case the Copeland winner is y. Thus, condition 1 is satisfied.

Simpson rule. The strategy profile (Ri, R−i) described above results in can-

didate x having the highest Simpson score and therefore being elected. This is

because the Simpson score of x in this case is m + 1 (N(x, a) = 2m for all a 6= x, y

and N(x, y) = m + 1), whereas the Simpson score of y is m and that of any other

candidate a 6= x, y is no greater than 1. By the same reasoning, it follows that the

strategy profile (R′
i, R−i) described above results in candidate y having the highest

Simpson score and therefore being elected. ||

Condition 2

Note that since in the case of scoring rules, instant runoff voting (with and with-

out the majority top-rank trigger), and Copeland and Simpson rules each player’s

strategies are such that the number of candidates in each rank is fixed, it follows

that these voting rules satisfy condition 2 in Definition 6 vacuously. Therefore, to

complete the proof we only need to show that approval voting satisfies condition 2.

To show this, fix any two strategies Ri = (X1, X2) and R′
i = (X ′

1, X
′
2) such

that X1 ⊂ X ′
1 and y ∈ X ′

1\X1. Also, fix any x ∈ X1. Now there are two cases to

consider.

First, assume that the tie-breaker places y ahead of x. Then consider any R−i

such that m voters submit (x,K\{x}) and other m voters submit (y,K\{y}). This

means x is elected when (Ri, R−i) is chosen. However, since x, y ∈ X ′
1, if i were to

submit R′
i so that the tie-breaker is invoked, y will win.

Next, assume that the tie-breaker places x ahead of y. Let R−i be such that

among the remaining n − 1 voters, m − 1 voters submit (x,K \ {y}), another m

voters submit (y,K \ {y}), one voter submits ({x, y},K \ {x, y}). This means x

is elected when (Ri, R−i) is chosen, after invoking the tie-breaker. However, since

x, y ∈ X ′
1, if i were to submit R′

i candidate y will win. ||

Condition 3

Scoring rules, approval voting and instant runoff voting (with and

without the majority top-rank trigger). For these voting rules condition 3

holds vacuously because these voting rules are not CC with respect to sincere

voting. To see this, consider each of the voting rules under consideration.

For scoring rules, the assertion follows from a three candidates, seventeen voters
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example due to Fishburn (1973) with a CW that fails to be elected under sincere

voting (see also Theorem 9.1 in Moulin, 1988). To show that the same holds for

arbitrary number of candidates k, consider Fishburn’s example and add k−3 more

candidates below the three candidates for all voters.

For approval voting and instant runoff voting (with and without the majority

top-rank trigger), see our example in section 2 and add k−4 more candidates below

the four candidates in the example for all voters.

Copeland rule and Simpson rule. Consider any three candidates X = {x, y, z}.
Suppose that the tie-breaker places z above x and y. Fix any two strategies Ri =

(x, y, z, X4, . . . , Xk) and R′
i = (y, x, z, X4, . . . , Xk), for any (X4, . . . , Xk). Next,

specify R−i as follows: (n− 1)/2 voters submit (x, z , y, X4, . . . , Xk) and (n− 1)/2

other voters submit (z, y, x, X4, . . . , Xk).

First let us calculate the Copeland rule. For Ri submission by i, comparing

x against any other candidate yields x each time a score of +1, so candidate x’s

Copeland score CSc(x) = k − 1, and thus x is the Copeland winner. On the other

hand if i submits R′
i instead, the Copeland scores are calculated as follows. Can-

didate x: comparison x, y yields x the score −1 and comparison of x against any

other candidate yields each time x the score +1, so CSc(x) = k − 3. Candidate y:

comparison y, z yields y the score −1 and comparison of y against any other candi-

date yields each time y the score +1, so CSc(y) = k− 3. Candidate z: comparison

z, x yields z the score −1 and comparison of z against any other candidate yields

each time z the score +1, so CSc(z) = k − 3. Since z is ahead of x and y in the

tie-breaker, it follows that if R′
i is chosen z will be the Copeland winner (for any

other candidate w, CSc(w) ≤ k − 7).

Next, consider the Simpson rule. For Ri submission by i, the Simpson scores

are SSc(x) = (n− 1)/2 + 1, SSc(y) = 1, SSc(z) = (n− 1)/2 and SSc(w) = 0 for

any other w; thus the Simpson winner is x. On the other hand, for R′
i submission

the Simpson scores are SSc(x) = (n− 1)/2, SSc(y) = 1, SSc(z) = (n− 1)/2 and

SSc(w) = 0 for any other w. With a tie-breaker placing z ahead of x, the Simpson

winner is x. ||

Our required verifications for the specific one-shot voting rules are now complete.

Thus, by Theorem 5, none of the voting rules considered in Proposition 3 are CC

under strategic voting. Q.E.D.
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