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Abstract. This paper presents an empirical analysis of the impact of time-
varying economic uncertainty on US monetary policy activism. I use a la-
tent factor based measure, extracted from a set of �ve di�erent variables, to
proxy economic uncertainty. Monetary policy activism is inferred from a time-
varying Taylor Rule estimated using a structural VAR allowing for stochastic
volatility. Contrary to Brainard's Principle, the results point to a substantial
Hansen and Sargent type reaction: monetary policy activism increases sig-
ni�cantly in response to an increase in economic uncertainty. The estimates,
moreover, indicate that both in�ation and unemployment activism respond
roughly equally to changes in aggregate uncertainty.

1. Introduction

This paper studies the impact of time-varying economic uncertainty on US mon-
etary policy activism. Since Brainard's [1967] seminal paper, economists have de-
bated the normative impact of economic uncertainty on monetary policy. Broadly
speaking, existing approaches can be classi�ed into three categories: (1) Bayesian
decision theoretical approaches (Brainard [1967] and Rudebusch [2001]); (2) robust
min-max monetary policy rules (Hansen and Sargent [2007]); and (3), robust policy
rules with structured uncertainty (Onatski and Stock [2000]). Despite similarities
in the models analyzed, the three approaches often lead to contradicting policy im-
plications. Models applying Bayesian approaches generally abide by the Brainard
Principle, stating that policy should exhibit conservatism in the face of uncertainty
(in the sense of having a smaller coe�cient on the output gap and in�ation in a
Taylor Rule). Central bank �experimentation� can appear to lessen, although not
invalidate, this e�ect (Wieland [1998, 2006] ).1 The Brainard Principle contrasts
with the �ndings using robust min-max monetary policy rules where increases in
economic uncertainty lead to more aggressive responses by the monetary authorities
to minimize the worst-case risk (often called the Hansen and Sargent Principle).
However, as shown by Onatski and Stock [2000], the �nding that min-max policy

Date: November 3, 2011.
I am indebted to Donald Robertson, Petra Geraats, Anezka Christovova, Saleem Bahaj as well
as participants at the Cambridge Macro Workshop for providing invaluable comments, improving
the quality of this draft. I would also like to thank Giorgio Primiceri for providing guidance in
the early stages of this paper.
1The Brainard Principle, as Wieland [1998, 2006] shows, tends to be attenuated in a framework
including learning where uncertainty will also motivate an element of experimentation in policy.
Despite this e�ect, the optimal policy that balances the cautionary and activist motives in these
(Bayesian) models still exhibits gradualism; i.e. a less active policy when uncertainty increases.
Gaspar et al. [2006] and Orphanides and Williams [2006] consider alternative aspects of central
bank learning, achieving roughly similar results regarding the impact of uncertainty on monetary
policy activism as Wieland [1998]. To some extent therefore, central bank experimentation can
appear to diminish - but not invalidate - the distinction between the Brainard and the Hansen
and Sargent Principles. Nevertheless, as Svensson and Williams [2007] show, the bene�ts from
experimentation can for most classes of forward-looking models appear very modest and, in some
speci�cations, even insigni�cant.
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rules are more aggressive than standard linear-quadratic rules does not necessarily
hold for all types of model perturbations.

In this paper, I provide the �rst, to my knowledge, empirical characterization
of the impact of economic uncertainty on monetary policy activism. I estimate
measures of US economic uncertainty and Federal Reserve activism, and use these
to investigate whether the Brainard or the Hansen and Sargent Principle have been
dominant in US monetary policy making.

I use �ve di�erent proxies of economic uncertainty: (1) a measure of stock market
volatility; (2) GARCH-implied aggregate growth volatility; (3) the cross-sectional
interquartile range of industrial output growth; (4) the dispersion in professional
forecasters one-year-ahead output forecasts; and �nally (5), the dispersion in mea-
sures of business expectations from consumer and producer surveys. Rather than
analyzing these separately - or selecting any single one of them, as the literature has
done so far - I use the method proposed by Giannone et al. [2008] to separate the
common factor, denoted economic uncertainty, from the idiosyncratic noise con-
tained in each proxy. I �nd that economic uncertainty is highly countercyclical,
responding to both global political and economic shocks. Uncertainty, for instance,
spikes during the VietnamWar, the two OPEC crises and during the recent �nancial
turmoil.

To estimate US monetary policy activism, I use a three-variable time-varying
Bayesian VAR with Stochastic Volatility [TVC-BVAR with SV] comprised of in�a-
tion, unemployment and interest rates. I detect sizable and persistent variation in
the responsiveness of the Federal Reserve. In particular, in response to an in�ation
shock, real interests rates appear to decrease during the chairmanship of Arthur F.
Burns only to increase rapidly with the arrival of Paul A. Volcker. Since then, mon-
etary policy has mostly abided by the Taylor Principle, although there appears to
have been a large trend decrease in activism during the tenure of Alan Greenspan.
Furthermore, the responsiveness of the Federal Reserve with regards to in�ation
and unemployment is highly correlated, indicating that periods of in�ation activist
policies coincide with periods of high responsiveness to measures of spare capacity.

I analyze the impact of the latent factor based measure of economic uncertainty
on monetary policy activism using a simple linear GMM approach. As an instru-
ment for economic uncertainty, I use lagged values: the latent factor based method
employed to extract time-varying uncertainty implies that lagged values show a
high-degree of correlation with contemporaneous. In my estimation, I control for
changes in the chairmanship of the Board of Governors; changes in the formal pol-
icy framework; movements in �nancial (in)stability; and lastly, for large spikes in
in�ation and unemployment.

Contrary to Brainard's [1967] Principle, my estimates indicate a signi�cant
Hansen and Sargent type reaction. Long-run coe�cients on in�ation and unem-
ployment in a Taylor Rule increase by in between 0.100 and 0.541 in response to
a two standard deviation increase in economic uncertainty (roughly the increase in
uncertainty witnessed during the recent crisis). Moreover, increases in uncertainty
have a positive and statistically signi�cant e�ect on in�ation activism across all
speci�cations. Unemployment activism similarly responds positively to economic
uncertainty; however, the e�ect is across most regressions slightly smaller - although
the di�erence is not statistically signi�cant - and appears to depend relatively more
on the exact measure of activism employed. Finally, this paper also shows that
the results presented appear robust to the exact measure of policy activism used:
comfortingly, most results also carry over to cases using real-time data on Federal
Reserve expectations to estimate monetary policy activism.



US MONETARY POLICY & UNCERTAINTY: TESTING BRAINARD'S HYPOTHESIS 3

1.1. Related Literature. This work is linked to three strands of literature. First,
this paper is related to the literature estimating the direct impact of stock market
implied uncertainty on monetary policy. Bekaert et al. [2010] and Rigobon and Sack
[2003] �nd that monetary authorities react to periods of high uncertainty by easing
policy rates. However, both authors employ a time-invariant framework and their
results are therefore confounded by the possibility that monetary policy activism

might respond to economic uncertainty.
Second, this paper complements the recent empirical literature examining the im-

pact of economic uncertainty on real output. Bloom [2009] and Bekaert et al. [2010]
use implied stock market volatility as a proxy of economic uncertainty, whereas
Alexopoulos and Cohen [2009], Bachmann et al. [2010] and Popescu and Smets
[2010] use a newspaper citation based measure, the dispersion in business expecta-
tions derived from business surveys and the disagreement in professional forecasters
one-year ahead output forecasts as their proxies of economic uncertainty, respec-
tively. The impact of innovations to economic uncertainty on aggregate activity
found appears to depend crucially on the exact proxy of uncertainty used. For
instance, Popescu and Smets [2010] and Bachmann et al. [2010] �nd much smaller
e�ects of economic uncertainty on industrial production than originally found by
Bloom [2009]. In addition, they �nd no empirical support for theoretical �overshoot
e�ects� (Bloom [2009] and Bloom et al. [2010]), whereby innovations to economic
uncertainty cause a subsequent output overshoot as the increased volatility of busi-
ness conditions triggers a medium-term hiring boom. Arguably, the latent factor
based measure employed in this paper should provide a cleaner estimate of eco-
nomic uncertainty by disentangling the noise from the signal in the proxies. For
instance, stock market volatility, the proxy used by Bloom [2009], is also impacted
by changes in risk-appetite, which economic impact might di�er signi�cantly from
that of aggregate uncertainty.

Finally, this paper is related to the vast literature estimating time-varying mon-
etary policy reaction functions to debate whether the cause of the poor economic
performance of the 1970s and early 1980s was due to �bad monetary policy� or just
�bad luck� (i.e. a sequence of adverse shocks). Important references are DeLong
[1997], Bernanke and Mihov [1998], Clarida et al. [2000], Orphanides [2001], Sims
[2001], Cogley and Sargent [2005], Primiceri [2005] and Boivin [2006]. Recently, es-
timated DSGE models as in Gambetti et al. [2008] and Fernández-Villaverde et al.
[2010] have also been employed to investigate these issues. On aggregate, the recent
literature appears to favor the �bad luck� explanation, although sizable variation
in the parameters of estimated Taylor Rules, consistent with large changes in the
conduct of monetary policy from the mid 1970s to the early 1980s, are also found.

In this paper, I follow the procedure of Primiceri [2005] and Cogley and Sargent
[2005] and use a TVC-BVAR with SV, approximating a small structural model, to
estimate a time-varying Taylor Rule for the US Federal Reserve. The literature,
highlighted above, has however considered alternative approaches. Broadly speak-
ing, these can be classi�ed into three categories: (1) estimated DSGE models using
time-varying Bayesian VARs as in Gambetti et al. [2008] and Fernández-Villaverde
et al. [2010]; (2) time-varying coe�cient Bayesian VARs without stochastic volatil-
ity as in Cogley and Sargent [2001]; and �nally (3), direct estimation of time-varying
Taylor Rules using Kalman Filter techniques and either ML or QLR-estimation as
in Kim and Nelson [2006] and Boivin [2006].

On the methodological side, estimated DSGE models have the advantage of us-
ing theoretically derived identifying restrictions. That said, stochastic volatility has
until recently not been included in these models (see Fernández-Villaverde et al.
[2010]). Nonetheless, as this paper shows - and as originally argued by Sims' [2001]
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review of Cogley and Sargent [2001] - stochastic volatility appears important in
explaining the innovations impacting the aggregate economy. In addition, the es-
timated DSGE model in Fernández-Villaverde et al. [2010], allowing for stochastic
volatility, uses relatively tight priors to obtain results, rather than the uninforma-
tive data driven priors used in this paper. The Kalman Filter techniques suggested
by Kim and Nelson [2006] and Boivin [2006] have the advantage of being computa-
tionally easier to implement. However, they rely on either ML-estimation - and are
therefore subject to the 'Pile-up Problem' (Harvey et al. [1994]), whereby the ML
estimator of the covariance matrix has a point mass at zero - or on a �xed (small)
number of breaks in the standard deviation of the shocks. As this paper shows,
there appears to be rather many persistent changes in the standard deviation of
innovations to the Taylor Rule, and the changes do not appear to be con�ned to a
single period. Furthermore, any type of learning dynamics will also favor a model
with drifting coe�cients over one with discrete breaks.

1.2. Organization. The rest of the paper is organized as follows. The next section
presents the latent factor based measure of economic uncertainty, while Section 3
estimates monetary policy activism using a TVC-BVAR with SV. Section 4 presents
and discusses the GMM estimates of the impact of time-varying aggregate uncer-
tainty on US monetary policy activism. Section 5 concludes.

2. Measuring Economic Uncertainty
2

In this section, I present a new measure of US aggregate economic uncertainty
and analyze how it compares to other, previously suggested, proxy measures. Given
that economic uncertainty is fundamentally unobservable, I rely on the common
factor extracted from a set of proxy measures consisting of �ve variables - one of
which I suggest as a new proxy of economic uncertainty. Clearly, such an approach
remains �lled with di�culties in the absence of a direct reliable measure. Never-
theless, the combined use of several proxies and the associated disentangling of the
noise from the signal should improve on previous estimates and generate a more
dependable benchmark from which to assess the impact of economic uncertainty on
monetary policy activism.

2.1. Data. The complete set of proxy variables used in the estimation are: (1) a
measure of stock market volatility; (2) GARCH-implied aggregate growth volatil-
ity; (3) the cross-sectional interquartile range of industrial output growth; (4) the
dispersion in professional forecasters one-year ahead output forecasts3; and �nally
(5), the dispersion in measures of business expectations from consumer and pro-
ducer surveys (details can be found in Appendix A). The list of proxy measures
considered includes all but one previously analyzed variable used in the literature,
as well as one new measure: the dispersion in consumer business surveys.4

2This section borrows heavily from Kohlhas [2011].
3An alternative - and perhaps theoretically more appealing - measure of professional forecaster
dispersion would be the variance of a combined density forecast. However, there are two reasons
for why the more 'standard' measure employed in this paper is preferable. First, the Survey
of Professional Forecasters by the Philadelphia Federal Reserve only provides combined density
forecasts on a consistent basis going back to 1992Q1. Second, some doubts about the validity
of the stated individual density forecasts have been cast in the literature, see e.g. Diebold et al.
[1997].
4Alexopoulos and Cohen [2009] are currently updating their newspaper based measure to include
more journals. Therefore, it is not included in this analysis.
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2.2. Econometric Method. In order to e�ciently estimate the common factor on
the unbalanced data set comprised by the �ve monthly proxies of macroeconomic
uncertainty, I use a framework that closely follows that of Giannone et al. [2008]
and Banbura and Modugno [2010] with only minor di�erences with regards to the
initialization of the procedure. The main advantage of this framework is that it
e�ciently handles a relatively small cross-section (allowing for missing observations)
by utilizing both cross-sectional and time variation in generating the estimates of
the underlying factors. As the method is 'non-standard', I brie�y outline it below.

Let yt = [y1t, y2t, ..., ynt]
′, t = 1, ..., T denote a stationary n-dimensional vector

process. Throughout the analysis, I assume that zt - the standardized version of
yt - admits the following dynamic factor model representation:

(2.1) zt = ΛFt + εt, εt ∼WN(0,Ψ)

(2.2) Ft = Φ1Ft−1 + ...+ ΦpFt−p + ηt, ηt ∼WN(0,Σ),

where Ft is an r× 1 vector of (unobserved) common factors, Λ = [λ1, ..., λn]′ is an
n × r matrix of factor loadings and εt = [ε1t, ε2t, ..., εnt]

′ is the idiosyncratic error
term with: E [εtε

′
t] = diag(ψ1, ..., ψn) = Ψ, E [εtε

′
s] = 0, ∀s 6= t and uncorrelated

with Ft at all leads and lags, E [εtηs
′] = 0, ∀s (i.e., I assume an exact factor model

structure).
An initial estimate of the common factors is found using iterative least squares:5

(2.3)

({
F̂t

}t=T
t=1

, Λ̂

)
= arg min
{Ft}t=Tt=0 ,Λ

{
T∑
t=1

n∑
i=1

(zit − λ′iFt)
2

}
.

The unbalanced panel nature of our dataset is accommodated by summing over non-
missing observations.6 Once (2.3) is solved, Ψ can be estimated as Ψ̂ = 1/(T −
1)
∑T
t=1 ε̂tε̂t

′ and the remaining parameters can be estimated by running a VAR
on the estimated factors:

Φ̂′ =

T∑
t=p+1

F̂tx
′
t

(
T∑

t=p+1

xtx
′
t

)−1

(2.4) Σ̂ =
1

T − p− 1

T∑
t=p+1

η̂tη̂
′
t,

where x′t =
[
F̂′t−1, F̂

′
t−2, . . . , F̂

′
t−p

]
and Φ′ =

[
Φ1,Φ2, . . . ,Φp

]
.

The estimated parameters, F̂t, Λ̂, Ψ̂, Φ̂ and Σ̂ now fully populate the state
space given by equations (2.1) and (2.2). An improved estimate of Ft, which
now invokes time-series averaging, can therefore be computed using the Kalman

5This is where I di�er from Giannone et al. [2008]. As some of the proxy measures are only
available for a very short period of time, principal components - the procedure normally used to
obtain initial estimates of the common factors - would be estimated on very few observations.
6When the panel is balanced, the solution to the least squares problem provides the principal
components of zit, which can also be estimated as the eigenvectors of the sample covariance
matrix. However, in this unbalanced panel data set an iterative two-step procedure has to be
implemented to solve the least squares problem. Estimation is carried out when I have data on
three or more uncertainty proxies. I use 500 iterations and 25 di�erent starting values. That said,
in all cases the procedure converged after roughly 100 iterations. As ΛFt = ΛQQ−1Ft for any
non-singular matrix Q, only the column space of the factors can be identi�ed. The common factor
is therefore normalized to have identity second moment matrix. See also Hatzius et al. [2010].
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Figure 2.1. US Macroeconomic Uncertainty
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Smoother.7 That said, the Kalman Smoother does not exploit any time series or
cross-sectional correlation (possibly) present in the error terms, which are treated
as uncorrelated both in time and in cross-section. But, as �rst proved by Doz et al.
[2007], consistent estimates of the common factors still hold under an 'approximate
factor structure'.8

2.3. US Macroeconomic Uncertainty. The latent factor measure of economic
uncertainty, unct, is estimated from January 1965 to October 2010, corresponding
to the subsample for which I have at least three uncertainty proxies. Throughout the
analysis, I assume a lag length of two, p = 2 (experimenting with higher order lags
resulted in similar estimates), and the existence of only one common factor, r = 1.
From a theoretical perspective all the measures were chosen to proxy the same
underlying variable: macroeconomic uncertainty. Therefore, one should a priori
expect there to be only one common factor. Correspondingly, the �rst common
factor explains over 61% of the overall variation, with the other factors contributing
at most 14%. Figure 2.1 depicts the uncertainty measure.

As we can see, uncertainty appears to dramatically increase following major eco-
nomic and political shocks like the Vietnam War, the end of the Gold Standard
and the two OPEC crises. The wide variety of shocks causing spikes in uncer-
tainty is also apparent, ranging from domestic terrorist attacks to �nancial market
crises in developing economies. Furthermore, uncertainty is highly countercyclical,
often doubling during stages of economic downturns. In fact, not only does the
latent factor measure exhibit this feature, but all of the uncertainty proxies show

7Notice that the parameters Λ̂, Ψ̂, Â and Σ̂ could be re-estimated using the new factors F̂t from
the Kalman Smoother. This is the �rst step of the EM algorithm proposed by Banbura and
Modugno [2010]. By iterating until convergence, one obtains ML estimates under gaussianity.
That said, I re-estimated the latent factor model on the unbalanced data set using this approach,
but found only very modest changes compared to the two-step procedure.
8An alternative to using Iterative Least Squares coupled with the Kalman Smoother to extract
the common factor is Bayesian Shrinkage techniques, see Mol et al. [2008]. That said, the results I
obtained using Bayesian Shrinkage as well as standard Principal Components appear very similar.
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Table 1. Factor Loadings

λ′i (1) (2) (3) (4) (5.1) (5.2)

Unc 0.91 0.74 1.01 1.13 0.99 0.43
R2 0.59† 0.23 0.45 0.54 0.56 0.17

Variable numbers are put in parentheses: (1) measure of stock market volatility; (2) GARCH-implied
aggregate growth volatility; (3) the cross-sectional range of industrial production growth; (4) the
dispersion in professional forecasters one-year ahead output forecasts; and �nally (5), the dispersion in
measures of business expectations from consumer (5.1) and producer surveys (5.2) [see also Appendix
A]. All coe�cients are signi�cant at the 5% level. † indicates a variable where the 1987 stock market

crash has been excluded in the calculation of R2.

rapid increases during recessions. It is therefore a consistent �nding that the dis-
tribution of agents perceptions of the macroeconomy shifts during downturns: the
mean-outcome worsens and the variance increases. In a recent paper, Mele [2009]
summarizes theoretical reasons for why uncertainty might be counter-cyclical. The
most important appear to be: (1) incomplete information about non-linearities in
the economy, (2) non-convex adjustment costs, as also highlighted by Bloom [2009],
and (3), the procyclicality of �nancial market risk-taking. Finally, a noticeable fea-
ture of Figure 2.1 is the Great Moderation. The volatility of uncertainty apparently
decreased markedly in the 1990s and early 2000s with spikes only registering at half
the levels seen in previous decades.

To assess which uncertainty proxies load most heavily onto the economic uncer-
tainty measure, Table 1 presents the factor loadings, λ′i, and the associated R2. As
Table 1 shows, the uncertainty measure explains a large proportion of the variation
in the �nancial market based proxy of economic uncertainty as well as the measures
of forecast dispersion and consumer expectations. That said, for each proxy there
remains a large part of the total variation which is attributed to proxy-speci�c noise,
unrelated to economic uncertainty. As argued, this was to be expected, caused by,
for instance, risk-aversion also partially driving stock market volatility. The disen-
tangling of this noise from the signal is a clear advantage of the latent factor based
uncertainty measure.

Interestingly, the latent factor explains very little of the variation in the business
expectations category, (5.2), which is identical to the measure used by Bachmann
et al. [2010]. This could suggest that part of the reason for why their results di�er
meaningfully from the rest of the literature on the impact of uncertainty shocks is
that the measure of uncertainty they employ is fairly uncorrelated with the other
proxy measures. The di�erence between the proportion explained by the common
factor of the consumer and business expectation categories is also striking. Part
of this di�erence might be explained by the group of �rms sampled being subject
to industry and region speci�c shocks, whereas the consumer category assesses
aggregate economic expectations. That said, the di�erence among the survey based
categories is puzzling.

3. Monetary Policy Activism

In this section, I estimate US monetary policy activism using a time-varying
Bayesian VAR [TVC-BVAR] with stochastic volatility [SV]. I allow for drifting
coe�cients to capture changes in policy activism, but also to account for any non-
linearities or changes in the lag structure present over the sample period. Multivari-
ate stochastic volatility is included to allow for the variation in aggregate economic
uncertainty documented in Section 2. In addition, as originally noted by Sims
[2001], ignoring heteroskedasticity in the errors could vastly exaggerate the dynam-
ics in the random coe�cients. Allowing for both time variation in the coe�cients
and in the shocks leaves it up to the data to determine whether the �uctuations in
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the linear model are best derived from changing responses to homoskedastic shocks
or from changes in the covariance matrix of the innovations. The procedure used
follows that of Primiceri [2005] and Cogley and Sargent [2005].

Consider a modi�ed version of the monetary policy rule in Clarida et al [2000]:

it = ρ(L)it−1 + [1− ρ(L)] i∗t + eMP
t(3.1)

i∗t = i∗ + φ(L) [πt − π∗] + ψ(L) [ut − u∗] ,(3.2)

where it denotes the policy rate; i
∗
t the �desired� policy rate; e

MP
t a monetary policy

shock; πt the in�ation rate; π∗t the target in�ation rate; ut the unemployment rate9;
u∗t the NAIRU; and i

∗, the equilibrium nominal interest rate. Finally, φ(L), ψ(L)
and ρ(L) are lag polynomials. Equations (3.1) and (3.2) specify that the monetary
authorities set the target interest rate, i∗t , as a function of the in�ation and unem-
ployment gap; however, they only attain the target rate gradually as they smooth
the transition from one target rate to the next. Combining the two equations gives:

(3.3) it = ĩ∗ + ρ(L)it−1 + φ̃(L) [πt − π∗] + ψ̃(L) [ut − u∗] + eMP
t ,

where ĩ∗ ≡ [1− ρ(1)] i∗, φ̃(L) ≡ [1− ρ(L)]φ(L) and ψ̃(L) ≡ [1− ρ(L)]ψ(L). Equa-
tion (3.3) can be interpreted as a Taylor Rule, augmented to include higher-order
dynamics.

Following Cogley and Sargent [2005], I de�ne monetary policy activism with
regards to in�ation (απ) and unemployment (αu) as the long-run response of it to
πt and ut, respectively:

απ ≡ φ̃(1)
1−ρ(1)(3.4)

αu ≡ ψ̃(1)
1−ρ(1) .(3.5)

The policy rule is said to be �in�ation activist� i�. απ ≥ 1. In some models,
an in�ation activist monetary policy rule delivers a determinant equilibrium that
eradicates sunspots as determinants of in�ation and unemployment.10

As with most of the literature on time-varying Taylor Rules (see e.g. Villaverde
et al [2010]), equation (3.3) includes contemporaneous and lagged explanatory vari-
ables. The extent to which policy makers also respond to expectations of future
values of in�ation and unemployment may therefore be thought to partially con-
taminate the �ndings. However, equation (3.3) can be re-interpreted as the re-
duced form of a forward-looking Taylor Rule, where expectations of future values
of in�ation and spare capacity depend upon current and lagged values of in�ation,
unemployment and interest rates through, as in this case, a VAR. In fact, Cogley
and Sargent [2001] employ an analogous structural form using, like in this paper, a
three-variable BVAR in their estimation of a time-varying Taylor Rule.

Alternatives to structural estimation of a forward-looking Taylor Rule exist.
Most notably, Generalized Method of Moments [GMM] estimators assuming ratio-
nal expectations, using contemporaneous and lagged variables as instruments, have
been heavily popularized since Clarida et al [2001]. However, as shown by Mavroei-
dis [2005], drawing upon arguments made by Pesaran [1981], these estimators are
highly unreliable as they are not empirically identi�ed. Moreover, allowing for the

9For comparison reasons, I focus on the unemployment rate, rather than a more traditional output
gap based measure.
10This terminology follows Leeper [1991], who de�ned a monetary policy rule as active i�. the
real interest rate increases in response to a permanent rise in in�ation. See also Woodford [2003]
for more on the link between model determinacy and activism.
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possibility of dynamic misspeci�cation, the identi�cation becomes spurious, imply-
ing a highly signi�cant coe�cient on the forward-looking component irrespective
of the true data generating process. As argued by Mavroeidis [2005], structural
approaches to the estimation of forward-looking Taylor Rules therefore appear su-
perior.

Explicitly modelling the expectation process of the Board of Governors of the
Federal Reserve as depending only on a subset of variables may, however, be viewed
as only approximating the true data generating process. I therefore, in Appendix
B, investigate the robustness of the estimates of monetary policy activism using
a simple forward-looking Taylor Rule estimated using real-time data on expecta-
tions. As an exogenous proxy of the Board of Governors' expectation of future
in�ation and spare capacity, I use the forecasts computed by the Sta� of the Fed-
eral Reserve, published a few days before the FOMC meeting, and collected with
a �ve year lag in what is known as the �Greenbook�. There are, however, several
important short-comings of this approach. First, there exists only a limited sam-
ple of relevant data. One year ahead forecasts are only consistently available from
January 1974 to January 2005. Second, and perhaps more worrying, very little is
known of the conditioning scenarios behind the Greenbook forecasts (Reifschneider,
Stockton and Wilcox [1997]); in particular, what is assumed for the path of future
policy rates. This could potentially imply some degree of endogeneity between the
monetary policy shock, eMP

t , and the expectation of, for instance, future in�ation,
Et (πt+h − π∗).11 That said, for the overlapping sample, the estimation of a simple
forward-looking Taylor Rule using Greenbook forecasts should provide a suitable
robustness check of the results presented below.

3.1. Model. In order to estimate (3.3), allowing for time variation in απt and αut
as well as simultaneity between πt, ut and it, I use a TVC-VAR with SV on yt =
[πt, ut, it]

′
. Consider the model:

(3.6) yt = ct + A1,tyt−1 + A2,tyt−2 + . . .+ Ap,tyt−p + εt, V[εt] = Ωt

where ct denotes a time varying n×1 vector of coe�cients multiplying the constant
term12; Ai,t, i = 1, . . . , p, an n × n matrix of time-varying coe�cients; and et, an
n × 1 vector of heteroskedastic shocks with covariance matrix Ωt.

13 Without loss
of generality, consider the triangle reduction of Ωt :

(3.7) A0,tΩtA0,t
′ = HtHt

′,

where

A0,t =

 1 0 0
a1t 1 0
a2t a3t 1

 , Ht =

 h1t 0 0
0 h2t 0
0 0 h3t

 .
11If for instance the forecasts, as is the case for the Swedish Riksbank, are conditioned on market
expectation of future interest rates, and those expectations are correct, endogeneity between the
monetary policy shock and the measure of expectations would occur. For more on the Greenbook
forecasts, see Appendix B.
12Note that the time varying constant accommodates, to a certain extent, misspeci�cations in the
measure of spare capacity and/or changes in the in�ation target.
13Small scale VARs, like the one considered in this paper, are common in the literature estimating
monetary policy reaction functions, see e.g. Rotemberg and Woodford [1997] and Cogley and
Sargent [2001]. n is in our case equal to 3; however, the model can be extended to any nεN+.
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The assumption that A0,t is lower-diagonal is not an identi�cation assumption -
although I will later use it to obtain the structural form - rather it is merely a
particular way of parameterizing the reduced form covariance matrix.14 The trian-
gular reduction used in (3.7) is common in the VAR literature allowing separately
for stochastic volatility and time-varying instantaneous coe�cients, see e.g. Koop
and Korobilis [2009]. Vectorizing the RHS coe�cients in (3.6) and stacking them
in At allows us to write the VAR in the SURE form as:

yt = X′tAt + A−1
0,tHtet, V [et] = In(3.8)

X′t =
[
In ⊗

(
1, y

′

t−1, y
′

t−2, . . . , y
′

t−p

)]
.

The approach taken is to model the parameters of (3.8) instead of (3.6). Speci�cally,
the dynamics of the model parameters: at = [a1t, a2t, a3t]

′, At and log(ht) =
log [h1t, h2t, h3t]

′
are assumed to follow driftless random walks, i.e.

at = at−1 + ea
t(3.9)

At = At−1 + eA
t(3.10)

log(ht) = log(ht−1) + eh
t .(3.11)

Modelling the diagonal components of Ht as geometric random walks implies that
the model belongs to the class of VARs using stochastic volatility to capture het-
eroskedasticity in the errors. Alternative approaches are considered in Koop and
Korobilis [2009]. As emphasized in Cogley and Sargent [2005], a random walk pro-
cess hits any lower and upper bound with positive probability implying that the
model might exhibit explosive behavior - a clearly undesirable property. That said,
as long as the model is thought to be in place for a �nite time period and not
forever, this set of assumptions should be innocent enough (more on this later). In
addition, the random walk assumptions greatly reduce the number of parameters
in the estimation procedure and allow the parameters to exhibit numerous per-
manent shifts with the changes occurring over several periods. As demonstrated
by Boivin [2006], the latter two features appear important in modelling monetary
policy activism.

All the innovations in the model are assumed to be jointly normally distributed
with covariance matrix given by:

(3.12) V =V




et

ea
t

eA
t

eh
t


 =


In 0 0 0
0 Va 0 0
0 0 VA 0
0 0 0 Vh

 ,
where Vi, i = a, A, h is a symmetric positive de�nite matrix. In addition, I assume
that Va is block diagonal with blocks corresponding to parameters from di�erent
equations. The zero-blocks in V could be replaced with free parameters, as is for
instance done in Koop et al [2009].15 However, allowing for a complete covariance
matrix would preclude any structural interpretation of the parameters. In addition,

14Primiceri [2005] discusses how, in theory, the choice of parametrization could a�ect the results.
However, as shown by Koop et al [2009] empirically this does not seem relevant.
15Primiceri [2005] and Koop et al. [2009] report only very minor changes to their estimates when
allowing for a full covariance structure in V instead of a block diagonal one.
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the model is already heavily parametrized, so it is doubtful how much would be
gained by including extra parameters.16

3.2. Estimation Technique. The estimation of (3.8) subject to (3.9)-(3.12) is
done using Bayesian methods. The main advantage of this approach over classical
estimation techniques is in dealing with the high dimensionality and non-linearity
of the problem; the likelihood function most likely has several peaks, some of which
will be in uninteresting regions of the parameter space not at all representative of
the overall �t of the model. Bayesian methods can e�ciently deal with this prob-
lem by using uninformative priors on �reasonable� areas of the parameter space.
Furthermore, as shown by Harvey et al. [1994], the maximum likelihood estimator
is subject to the so-called 'Pile-up Problem', implying that the ML estimator of
the covariance matrix has a point mass at zero if the changes in the covariance
terms are small. Besides, the maximization of a high-dimensional likelihood func-
tion is complicated and Monte Carlo Markov Chain [MCMC] methods provide an
attractive alternative.

3.2.1. Priors. I follow the literature - in particular Cogley and Sargent [2005] and
Primiceri [2005] - and use data driven normal-inverse-Wishart conjugate priors.
The prior for A0 is chosen to be normal with mean equal to the LS point estimate
on an initial subsample, ÂLS, and variance equal to four times the variance of the
time invariant VAR.17 The prior for a0 is obtained in a similar way. For log(h0),
the mean of the distribution is chosen to be the logarithm of the LS point estimate
while the covariance matrix is arbitrarily set equal to the identity matrix.18

The priors for the hyperparameters: VA,Vh and the blocks of Va are assumed to
be distributed as independent inverse-Wishart. In order to make the priors as di�use
as possible, the degrees of freedom are set to the smallest number possible to obtain
a proper distribution (for instance, for Vh, the degrees of freedom, vh, are set such
that: vh = dim(Vh) + 1) . That said, for VA a slightly tighter prior was deemed
necessary to avoid implausible behavior of the time-varying coe�cients. The scale
matrices, Q

A
, Q

h
and Q

a,i
, i = 1, . . . S , where S denotes the number of blocks

in Va, are chosen to be constant fractions of the variances of the corresponding LS
estimates on the initial subsample multiplied by the degrees of freedom (the reason
being that for an inverse-Wishart distribution, the scale matrix can be interpreted
as a residual sum of squared errors).

Succinctly, the priors can be written as:

16The total number of observations in this model is: 3T . The number of parameters (incl. initial
values) is equal to: 3 (initial parameters in h) + 3 (initial parameters in a) + 3(1 + 3p) (initial
parameters in A) + 6 (parameters in Vh) + 3 (parameters in Va) + 3(1 + 3p) [3(1 + 3p) + 1] /2

(parameters in VA) = 3(1 + 3p)
[
3(1+3p)+1

2
+ 1
]

+ 15. Increasing the lag-length in this model

therefore increases the parameter space quite rapidly. As discussed further below, there is therefore
an added argument for keeping the lag-structure parsimonious.
17The history of a variable, xt, up until time T is denoted as: xT = [x1, x2, . . . , xT]. Increasing
the variance of the LS estimates by a factor of four is merely a way of guaranteeing that the priors
are suitably uninformative.
18While the log-normal prior on h0 is standard in the stochastic volatility literature, see Primiceri
[2005], it is technically not a conjugate prior. That said, the prior has the advantage of maintaining
tractability.



US MONETARY POLICY & UNCERTAINTY: TESTING BRAINARD'S HYPOTHESIS 12

A0 ∼N
(
ÂLS, 4V

(
ÂLS

))
, a0 ∼N

(
âLS, 4V

(
âLS

))
log
(
h0
)
∼N

(
log
(
ĥLS

)
, In

)
Vh ∼ IW (4khIn, 4) , VA ∼ IW

(
40kAV

(
ÂLS

)
, 40

)
Va

1 ∼ IW
(
2kaV

(
âLS

1

)
, 2
)
, Va

2 ∼ IW
(
3kaV

(
âLS

2

)
, 3
)
,

where ka = 0.12 and kA = kh = 0.012 are set according to the literature while
Va

1 and Va
2 speci�es the two blocks of Va. The priors used are therefore not �at,

but di�use and uninformative, so that the data is free to speak about the relevant
features.

3.2.2. Simulation Method. The model is estimated by simulating the distribution
of the unknown parameters using MCMC methods. The Gibbs Sampler is used
to exploit the block structure of the unknowns and draw a sample from the joint
posterior, p

(
aT, AT, log(hT), V

)
, given the data. Gibbs Sampling procedes in

four steps. First, I draw the time varying coe�cients, AT, using the Carter and
Kohn [1994] simulation smoother.19 Second, conditional on AT, aT is part of a
normal linear state space and can therefore be sampled using the same method.
Third, conditional on the �rst two parameters, drawing log(hT) can be done using
the method presented in Kim et al [1998]. And �nally, fourth, simulating the condi-
tional distribution of V is done in a standard way as it is a product of independent
inverse-Wishart distributions. Details of the simulation method used can be found
in Koop and Korobilis [2009] and Primiceri [2005].

3.3. Identi�cation. The model described so far is a reduced form model. Identi-
fying assumptions must be made to allow for a structural interpretation. I begin
in a standard fashion by ordering the dependent variable, yt, as yt = [πt, ut, it]

′
.

The structural model has the form

yt = X′tAt + Btut,

where Bt imposes the identifying assumptions and ut denotes the structural inno-
vations. The identifying assumption for the monetary policy shock is that changes
in the policy rate have no immediate impact on in�ation and unemployment. This
identi�cation assumption is standard in the literature, see e.g. Bernanke and Mi-
hov [1998] and Christiano et al [1998]. Regarding the non-policy block, πt and
ut, I assume that unemployment has no contemporaneous impact on in�ation.20

Combined, these assumptions imply that Bt is lower diagonal (given by a Cholesky
decomposition) and can be found from the reduced form parameters as:

Bt = Ω
1/2
t = A−1

0,tHt.

The MCMC draws of A0,t and Ht can therefore be directly transformed into draws
of Bt and hence impulse responses.

19Alternatively, the more e�cient method of Durbin [2002] could be used.
20Admittedly, this assumption is more controversial and could just as well be reversed. That said,
when I attempted this, results remained similar.
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Figure 3.1. In�ation Activism
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In�ation activism: median response of interest rate to a 1pp permanent increase in in�ation. 16th and
84th percentiles, corresponding to one standard deviation con�dence bounds, are also depicted. Panel
(a) shows the contemporaneous response; Panel (b) the cumulative response after 10 quarters; Panel
(c) the response after 30 quarters; and �nally, Panel (d) the estimate of monetary policy activism.

3.4. Empirical Results. The TVC-BVAR with SV is applied to estimate US
monetary policy activism from January 1953 to October 2010.21 Two lags are used
in the estimation.22 I initialize the priors using the �rst 10 years (120 observations)
as a training sample. The estimation is based on 30,000 runs of the Gibbs Sampler,
discarding the �rst 6,000 to allow for convergence to the ergodic distribution. To
reduce the serial correlation in the draws, I save only every third draw. Appendix
C shows that the model satis�es all standard convergence diagnostics.

Figure 3.1 and 3.2 present the activism estimates, απt and αut , as well as the
contemporaneous and 10/30-period impact of a permanent shock to in�ation and
unemployment.23 Judging by the point estimates in panel (d), US monetary policy
was �in�ation active� by the mid-1960's, turned passive in the late 1970's under the
chairmanships of Arthur F. Burns and G. William Miller only to become highly

21All series are taken from the FRED database. In�ation is measured using the annual growth rate
in CPI-U, while the nominal interest rate used is the yield on 3-month Treasury bills, preferred to
the more conventional policy rate as it is available for a longer period of time. The unemployment
rate is measured using the civilian unemployment rate. All data is seasonally adjusted.
22In theory, the lag length could be optimized by calculating Bayes' factor for competing models.
That said, as shown by Lindley [1957], strange outcomes can occur when using di�use priors.
Using the formula from footnote 16, the total number of parameters, including initial values is
267.
23The persistence of interest rates causes the variance of the posterior distribution of in�ation and
unemployment activism to increase rapidly. In addition, in Figure 3.1 and 3.2 I do not include
uncertainty about the future evolution of the parameters. By doing so, I follow the literature
and in particular the arguments given in Koop et al [2009]. Given the high dimensionality of the
model, it should also come as no surprise that the standard error bands of the contemporaneous
impact coe�cients are reasonably wide.
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Figure 3.2. Unemployment Activism
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Unemployment activism: median response of interest rate to a 1pp permanent increase in the
unemployment rate. 16th and 84th percentiles are also depicted. Panel (a) shows the contemporaneous
response; Panel (b) the cumulative response after 10 quarters; Panel (c) the response after 30 quarters;
and �nally, Panel (d) the estimate of monetary policy activism.

active with the arrival of Paul A. Volcker. Since then monetary policy has mostly
abided by the Taylor Principle.24 Interestingly though, in�ation activism fell quite
markedly during the boom years in the mid-1990s and in the early 2000s, touching
marginally below the Taylor Principle recommended lower-bound of one in 2002-
2003. As documented by Cogley and Sargent [2003], the 1990s and the early 2000s
were characterized by unusually steady in�ation rates, exhibiting high degrees of
mean reversion, possibly explaining part of this decline. Finally, the large drop
in in�ation activism during the recent crisis is due to the policy rate reaching the
lower bound.

As we can see from Figure 3.2(d), unemployment activism exhibits broadly the
same trends as in�ation activism. In fact, the correlation between changes in the
median of απt and αut is -0.87, suggesting that changes in activist policies are oc-
curring roughly at the same time. On balance this �nding is consistent with innate
preferences being a driver of monetary policy activism, but other factors could
also explain this correlation (see more below). That said, for unemployment the
di�erence between the long-run response and the contemporaneous response is rel-
atively small, indicating that the Federal Reserve responds quicker to increases in
unemployment than to in�ation. A likely explanation for this di�erence is that the
noise-to-signal ratio is higher for in�ation than for unemployment.

Figure 3.3 plots histograms of the posterior distribution of απt and αut given
the data during the chairmanship of Burns (January 1977) and Volcker (January

24This fact perhaps indicates some degree of learning from the experiences during and pre-Arthur
F. Burns, see DeLong [1997] and Romer and Romer [2002].
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Figure 3.3. Histogram for απt and αut in selected years
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1980) . The probability that απt ≥ 1 is 0.29 and 0.94 in 1977 and 1980, respec-
tively, indicating a reasonably large shift in the distribution. Comparing estimates
along the same sample path, the probability that απt increased and αut decreased
between 1977 and 1982 is 0.96 and 0.92, respectively. I interpret this as reasonably
strong evidence - although not statistically conclusive - for a shift in policy activism
between the two dates.25

Examining the breakdown of απt and αut into its estimated subcomponents ρt(1),

φ̃t(1) and ψ̃t(1) shows that most of the variation in monetary policy activism is

driven by changes in φ̃t(1) and ψ̃t(1) (above 75% of the total variation for both
απt and αut ) rather than changes in the persistence of interest rates, ρt(1). In
fact, the sum of the estimated persistence parameters stays remarkably constant in
our sample at around 0.90, despite the existence of a tentative positive covariance
between ρt(1) and απt and αut .

26

Lastly, to assess the validity of including stochastic volatility, Figure 3.4 shows
the time-varying standard deviation of identi�ed shocks. Panel (a) clearly shows
the impact of the two oil price spikes, whereas in panel (c) we can see the e�ects
of Volcker's monetary targeting. On balance, the standard error bands are fairly
tight, suggesting signi�cant variation in the standard deviation of the shocks. For
instance, comparing estimates along the same sample path, the probability that
the standard deviation of the interest rate equation increased from January 1977 to
October 1979 is 0.96. Allowing for stochastic volatility therefore appears important
when modelling monetary policy activism.27

25As noted by Cogley and Sargent [2005] and Anderson et al [2003], formal tests of time-variation
provide virtually no help in establishing time-variation in VARs; the power of the tests used by
Bernanke and Mihov [1998] is often below 50%.
26These results corroborate with the empirical �ndings of Boivin (2006) as well as the theoretical
results in Rudebusch [2001].
27A few comments should be made at this point. As previously mentioned, including SV is biasing
the results from �nding signi�cant time-movement in monetary policy activism by allowing some
of the variation in the data to be explained by heteroskedasticity in the errors. The downside
of this approach is that I increase an already sizable parameter space. That said, I simulated
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Figure 3.4. Standard Deviation of Identi�ed Shocks
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Standard deviation of identi�ed shocks using a Cholesky ordering on: yt = [πt, ut, it]
′. Mean, 16th

and 84th percentiles of the posterior distribution of the residuals are depicted. Panel (a) shows the
residual standard deviation of the in�ation equation; Panel (b) the unemployment equation and Panel
(c) the interest rate equation.

3.4.1. Robustness. Overall, the results presented in the previous subsection ap-
pear reasonably robust to the choice of priors, variables, estimation sample and to
whether �exogenous� measures of expectations are used. I experimented with even
�atter priors for the initial states, A0, a0 and h0, and obtained virtually identical
results. That said, the choice of priors for the hyper-parameters, given by the mul-
tiplicative factors, ka and kA, and the corresponding degrees of freedom, vA and
va,i, i = 1, . . . S, appears more important. This should come as no surprise as these
parameters govern the prior belief about the amount of time variation in απt and
αut . The parameter, vA, can be increased or decreased in the interval [20; 100] with
virtually no changes in the results. However, the vector va cannot be increased
to more than [5, 6]′ before the amount of time-variation starts to dwindle. I also
experimented with higher/lower values for ka and kA and found the results to be
reasonably robust, although the model starts to misbehave for much higher values
of kA (factor of 10 larger and above).

There are two main reasons for the exact choice of priors used. First, all of
the previous literature, ranging from Cogley and Sargent [2001] to Koop et al
[2009], have used identical priors (but all on slightly di�erent data sets). The
primary supporting argument in each case being the results of Primiceri [2001] who
shows that the calculation of Bayesian factors tends to support this set of priors.
Second, I conducted a grid search over the 'crucial' parameters, ka, kA and vA, va,

the model using the time series characteristics of in�ation and unemployment and found that
including SV in a model which does not exhibit it often had only a minor impact on the estimates
of AT and aT. In addition, changes in the standard deviation of identi�ed shocks were - rightly so
- insigni�cant. However, excluding SV from a model which does exhibit it made the estimates of
AT and aT behave quite oddly, often implying estimates far from the true values. These results
are in line with Sims [2001] as well as the theoretical �ndings in Anderson et al [2003] and con�rm
the risks of excluding stochastic volatility in a model of monetary policy activism.
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gradually tightening the priors more and more, and found that for a reasonably
large range around the priors used the model does not misbehave and the results
remain similar.28 As the priors used are amongst the least informative in the grid,
their choice appears satisfactory.29

In addition, I also estimated the model using di�erent measures of in�ation
(the core PCE de�ator and the GDP de�ator) and spare capacity (linearly and
HP-detrended output). The estimates of monetary policy activism in each case
remained very similar; in particular when comparing estimates of απt and αut using
linearly-detrended output with those in the baseline case. Finally, as Appendix
B shows, the results presented in this section also carry through to a Taylor-Rule
setting allowing for �exogenous� measures of expectations (derived from Greenbook
forecasts).

3.4.2. Comparison to other approaches. As the literature review in the introduction
describes, alternative methods to estimate US monetary policy activism have been
considered in the literature. Broadly speaking, the alternative methods can be
classi�ed into three categories: (1) estimated DSGE models using TVC-VARs as in
Canova et al [2008] and Villaverde et al [2010]; (2) direct estimation of time-varying
Taylor Rules using Kalman Filter techniques and either ML or QLR-estimation as
in Kim and Nelson [2006] and Boivin [2006]; and �nally, (3) TVC-BVAR without

stochastic volatility as in Cogley and Sargent [2001]. On balance, the estimates of
in�ation activism presented in this paper resemble those of Villaverde et al [2010]
and Boivin [2006], while indicating somewhat more variation than found in Canova
et al [2008], Kim and Nelson [2006] and Cogley and Sargent [2001]. In addition,
our results resemble those of Primiceri [2005] and Cogley and Sargent [2005], both
of which use TVC-BVARs with SV. That said, the estimates in this paper imply
substantially less policy activism in the early 2000s than otherwise seen in the
literature, possibly due to the use of additional observations.

4. Testing Brainard's Hypothesis

In this section, I estimate the impact of time-varying economic uncertainty on
monetary policy activism. A �rst glance at the data reveals a positive contem-
poraneous correlation between changes in economic uncertainty and changes in
monetary policy activism (ρ̂∆unc,∆απ,m = 0.22 and ρ̂∆unc,∆αu,m = −0.14). These
initial estimates therefore suggest that the Hansen and Sargent Principle best ex-
plains Federal Reserve behavior. To investigate this relationship further and to
control for any possible endogeneity, I use a Two-Stage Least Squares [TSLS] ap-
proach, instrumenting economic uncertainty with lagged values. The latent factor
approach used to extract time-varying economic uncertainty rationalizes the choice
of these instruments.

4.1. Empirical Speci�cation. To �x ideas, consider a linear model relating the
change in the median of monetary policy activism, ∆απ,mt and ∆αu,mt , to changes
in economic uncertainty, ∆unct:

30

28The grid was constructed as: vAε {[20 : 20 : 100]}, vaε {[2, 3] : [1, 1] : [6, 7]},
kaε {[0.05 : 0.05 : 0.15]} and kAε {[0.005, 0.01, 0.05]}
29The model does though appear to be more robust when estimated prior to the recent �nancial
crisis. In addition, I attempted to use a revolving barrier as in Cogley and Sargent [2005], rejecting
all draws where the IRFs are unstable. This mechanism should address the previously mentioned
concern about a random walk hitting any lower and upper bound with positive probability. The
amount of draws rejected constituted a minute fraction of the overall number of draws and the
results therefore appear very similar.
30Note that as Section 2 used a random walk assumption for the time-varying coe�cients, the
natural focus of this section is on changes in the parameter estimates. Standard unit root tests
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(4.1) ∆αj,mt = βj0 + βj1∆unct + x′tβ
j
2(L) + ejt , j = {π, u} ,

where xt =
[
cb′t, dt

′, ∆ft, π̃t, ũt
]′
denotes a vector of controls; cbt a set of dum-

mies accounting for changes in the chairmanship of the Board of Governors (to
control for policy preferences)31; dt a vector specifying changes in the formal policy
framework32; and ∆ft, a variable proxying changes in �nancial instability. π̃t and
ũt denote indicator variables taking the value one when their Hodrick-Prescott [HP]
detrended level rises signi�cantly above the mean.33 π̃t and ũt are included in xt

to control for the possibility that as in�ation rises signi�cantly above the under-
lying rate - and/or unemployment falls below the NAIRU - policy makers might
become increasingly active to avoid further changes. Surico [2008] and Curkierman
and Muscatelli [2008] both �nd some (weak) evidence of non-linearity in the Taylor
Rule, potentially causing such e�ects.34

In the following, I assume that the variables included in xt - except for ∆ft -
are uncorrelated with the error term, ejt . First, changes in the chairmanship of the
Board of Governors, cbt, are determined by the President and the Senate at a �xed
date every four years, unrelated to current economic conditions, as stipulated by
the Banking Act of 1935. Second, changes in the policy framework, dt, due to for
instance a lack of success with the previous setup, might a�ect monetary policy
activism. But it is unlikely that changes in αj,mt , not attributed to the variables
in our model, can alter the target variable within the month. Lastly, in�ation and
unemployment are according to VAR studies impacted by changes in monetary
policy at roughly a six month to two year frequency, see e.g. Christiano et al
[2001]. It is therefore doubtfull that changes in the error term, respresenting for
instance changes in a given governor's innate preferences, can immediately impact
them.

A problem with directly estimating (4.1) is the possibility of feedback between

changes in monetary policy activism, ∆αj,mt , and changes in economic uncertainty,
∆unct. Even at a monthly frequency, it is plausible that changes in the behavior
of monetary authorities impact contemporaneously the amount of economic uncer-
tainty. A similar feedback could also exist between changes in monetary policy
activism and changes in �nancial fragility, ∆ft. That said, inferring a change in
policy activism might under normal circumstances take more than a month for the
public, suggesting that the possible endogeneity in (4.1) is by no means certain.
Moreover, Federal Reserve meetings have pre-dominantly taken place towards the
end of the month (74% after the 18th day), indicating some attenuation to any pos-
sible endogeneity bias. Comparing Instrumental Variables [IV] estimates with Least
Squares [LS] results will help clarify the likelihood of this feedback mechanism.

also indicate that the I(1) assumption for both in�ation and unemployment activism cannot be
rejected at the one percent level.
31The sample covers the chairmanship of William M. Martin, Arthur F. Burns, G. William Miller,
Paul A. Volcker, Alan Greenspan and Ben S. Bernanke.
32I account for the switch to non-borrowed reserve targeting in October 1979 as well as the
subsequent switch (back) to Federal Funds Rate targeting. Unfortunately, the exact date for the
latter is di�cult to infer. Thornton [2005], using transcripts of the �Blue Book� and the �Report
of Open Market Operations�, �nds that October 1982 is the most likely date. October 1982 is
therefore set as the end-date to money supply targeting.
33Both variables are HP-detrended with λ = 129, 600. The threshold used is ±1.65 standard
deviations above the mean, corresponding to a ten percent two-sided signi�cance level, treating
each month as an independent observation (see Bloom [2009]).
34To see that non-linearity in the Taylor Rule can cause these e�ects, consider a simple regression
model with a quadratic term (using standard notation): yt = xtβ+x2tγ+ εt = xt [β + xtγ] + εt =

xtβ̃t + εt, β̃t = β + xtγ.
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To instrument for changes in economic uncertainty at time t, I use the lagged
values: unct−1 and unct−2. The AR(2) speci�cation used in the latent factor
approach to extract time-varying economic uncertainty, unct, combined with highly
signi�cant coe�cients on both AR terms (p − values < 0.01), implies that the
lagged values are highly correlated with changes in economic uncertainty at time
t.35 In addition, it is plausible that monetary policy makers respond to changes in
economic uncertainty as soon as possible, rather than respond to lagged changes;
in particular given the evidence in Hansen and Sargent [2007] of fairly large welfare
gains to applying robustly optimal policy rules. The instruments should therefore
also be uncorrelated with the error term.36 The instrument set for ∆ft analogously
includes: ∆ft−1, ∆ft−2 and two lags of the unemployment rate. The use of lagged
values as instruments is common in macroeconomics and is, for instance, in line with
the literature estimating New-Keynesian Phillips Curves, see Clarida and Gertler
[1999].

Finally, the presence of �generated regressors� in (4.1) implies a need to correct
the standard errors of the estimates. Following Bernanke, Boivin and Eliasz [2005],
I implement a standard residual-based boot-strap procedure that accounts for the
uncertainty in the factor estimate of ∆unct.

4.2. Baseline Results. Table 2 presents IV and LS estimates of equation (4.1)
excluding and including changes in �nancial instability, ∆ft. Financial instability,
ft , is proxied using the TED spread: the spread between three-month US Treasury
Bills and the corresponding maturity USD LIBOR rate, available from November
1984.37 The estimation sample is thus from January 1965 to October 2010 and from
December 1984 to October 2010, respectively. Zero lags are used in the estimation.

Contrary to Brainard's Principle, the results in Table 2 indicate that an increase
in aggregate economic uncertainty, ∆unct > 0 , has in absolute terms a positive
and signi�cant e�ect on monetary policy activism. In fact, across all speci�cations
the Hansen and Sargent Principle is a better explanation of actual Federal Reserve
behavior. The estimates of the impact of uncertainty on in�ation activism range
in between 0.092 and 0.271, implying that a two standard deviation increase in
economic uncertainty, roughly what was witnessed during the recent crisis, has a
positive impact on the long-run responsiveness to in�ation of 0.184 to 0.542, all
else equal - an economically meaningful amount.38 Interestingly, an estimate of
the long-run change in the responsiveness to in�ation of c. 0.250 is in accordance
with the original simulations in Sargent [1999], although it is di�cult to directly
compare increases in our uncertainty proxy with the risk-sensitivity measure used
by Sargent. The estimates of the impact of a change in uncertainty on unemploy-
ment activism range from -0.054 to -0.172. The Federal Reserve therefore appears
to respond, on average, to increases in economic uncertainty with assigning a rela-
tively larger weight on in�ation in the Taylor Rule. This may seem like a slightly
counter-intuitive result: Hansen and Sargent [2007] �nd the opposite e�ect in a

35To see this result, note that any AR(2) process, yt = φ1yt−1 + φ2yt−2 + εt, can be written as:
∆yt = [φ1 − 1] yt−1 + φ2yt−2 + εt. The R2 of a regression of ∆unct on unct−1 and unct−2 is
0.58. In addition, ��rst stage� projection coe�cients can be taken directly from the estimates in
Section 2. The �second stage� variance matrix still needs to be adjusted though for the use of
instruments.
36Including lagged values of uncertainty in the LS estimates presented below supports this asser-
tion: despite the multicolinearity, the lagged values appear statistically insigni�cant.
37The TED spread is the standard measure of the US bank risk premia, and is thus an often used
proxy of �nancial instability.
38To put this number in context, 0.5 is about the di�erence between the level of in�ation activism
seen under Arthur F. Burns and the average level under Ben S. Bernanke, see Section 3.
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small theoretical model.39 That said, the di�erence between the parameter esti-
mates is not large, especially when taking into account the uncertainty surrounding
the estimates.

Comparing the impact of changes in uncertainty across speci�cations in Table
2, we see that the LS results are smaller than the IV estimates, indicating some
downward bias, though the di�erence is not statistically signi�cant. Controlling for
�nancial instability, on the other hand, as in column (2) and (4), appears to make
activism respond more, in an absolute sense, to economic uncertainty. However,
this e�ect may partially be attributed to the di�erent samples used as the preferred
measure of �nancial instability, the TED spread, is only available from December
1984 onwards.

In sum, the results in Table 2 provide reasonably compelling evidence of the
Federal Reserve acting according to the Hansen and Sargent Principle: increasing
monetary policy activism in response to positive shocks to economic uncertainty.
Robust control consideration may therefore contain a descriptive content yet to be
fully acknowledged in the literature. That said, central bank experimentation can
appear to (slightly) dull the incentive for a Brainard type response (Wieland [1998,
2006]), perhaps explaining a proportion of these �ndings. However, as argued by
Svensson and Williams [2007], for most models the experimentation motive may
not be of a practical concern; and in either case, it is di�cult to �nd historical
evidence of actual Federal Reserve experimentation.

Table 2 o�ers additional insight into the other determinants of monetary policy
activism. Changes in �nancial instability, ∆ft, have a negative e�ect on monetary
policy activism, implying that more �nancial instability, all else equal, makes mon-
etary policy makers more timid. However, this e�ect is only statistically signi�cant
at the ten percent level, and is in all speci�cations less than a third of the e�ect
of economic uncertainty. There is thus some tentative evidence that increases in
�nancial instability cause a shift away from in�ation and output stabilization; per-
haps towards providing added liquidity to the banking sector. That said, ∆ft and
∆unct do exhibit some moderate positive correlation (ρ̂ = 0.27), which might also
(partially) explain these �ndings. To investigate the robustness of the tentative
negative impact of �nancial fragility on monetary policy activism, in the following
subsection, I use a di�erent proxy for ∆ft, available back to January 1973.

The dummy accounting for the chairmanship of Paul A. Volcker is borderline
statistically signi�cant across all speci�cations in Table 2, but economically of a
smaller magnitude than perhaps expected. In the following subsection, I show that
this can partially be explained by the use of monthly data. But also the fact that
I control for changes in the policy framework enacted by Volcker, speci�cally the
start of non-borrowed reserve targeting, contributes to this result. The remaining
dummies in cbt, accounting for changes in the chairmanship of the Board of Gover-
nors, are all insigni�cant. This corroborates with the results in Section 2, showing
that changes in activism within chairmanship terms are at least as large as changes
in activism across chairmans.

39One explanation of the relatively larger weight placed on in�ation could be that changes in
uncertainty cause changes in the central bank loss function, assigning a higher weight to in�ation.
This could be the case if, for instance, the credibility of the price stability mandate was structurally
smaller than the credibility of the output mandate. An increase in uncertainty would thus cause
the central bank to react relatively more to in�ation in order to attempt to maintain/increase the
credibility of the in�ation target.
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ũ
t

-0
.0
0
1

0
.0
4
3∗
∗∗

-0
.0
0
6

0
.0
3
8∗
∗

0
.0
0
6

-0
.0
2
0∗
∗

0
.0
0
5

-0
.0
2
3∗

(0
.0
0
1
)

(0
.0
1
3
)

(0
.0
1
0
)

(0
.0
1
6
)

(0
.0
0
7
)

(0
.0
1
0)

(0
.0
0
7
)

(0
.0
1
3
)

∆
f t

-
0
.0
0
9

-
-0
.0
8
4
∗

-
0
.0
1
0
∗

-
0
.0
5
4
∗

(0
.0
0
7
)

(0
.0
4
6
)

(0
.0
0
5
)

(0
.0
2
9
)

∆
u
n
c t

0
.0
9
2
∗∗
∗

0
.1
1
0
∗∗
∗

0
.0
9
8
∗∗

0
.2
7
1
∗∗
∗

-0
.0
5
4
∗∗
∗

-0
.0
7
1
∗∗

-0
.0
6
4
∗∗

-0
.1
7
2
∗∗
∗

(0
.0
2
1
)

(0
.0
3
9
)

(0
.0
3
9
)

(0
.0
9
9
)

(0
.0
1
6
)

(0
.0
2
9)

(0
.0
2
6
)

(0
.0
6
3
)

S
a
m
p
le

0
2
/
6
5
:1
0
/
1
0

1
2
/
8
4
:1
0
/
1
0

0
2
/
6
5
:1
0
/
1
0

1
2
/
8
4
:1
0
/
1
0

0
2
/
6
5
:1
0
/
1
0

1
2
/
8
4
:1
0
/
1
0

0
2
/
6
5
:1
0
/
1
0

1
2
/
8
4
:1
0
/
1
0

F
1
3
.2

8
.2
5

-
-

6
.6
7

7
.5
7

-
-

R
2

0
.1
8

0
.1
4

-
-

0
.1
0

0
.1
3

-
-

p
J
−
s
ta
t

-
-

0
.5
1

0
.2
9

-
-

0
.6
4

0
.3
8

(i
)
R
es
id
u
a
l-
b
a
se
d
B
o
o
t-
st
ra
p
p
ed

st
a
n
d
a
rd

er
ro
rs

in
p
a
re
n
th
es
es

u
si
n
g
4
0
,0
0
0
b
o
o
t-
st
ra
p
lo
o
p
s.

(i
i)
*
p
<
0
.1
0
,
*
*
p
<
0
.0
5
,
*
*
*
p
<
0
.0
1
.

(i
ii
)
E
q
u
a
ti
o
n
(1
)
a
n
d
(2
)
a
re

es
ti
m
a
te
d
u
si
n
g
L
S
;
(3
)
a
n
d
(4
)
u
si
n
g
T
S
L
S
,

in
st
ru
m
en
ti
n
g

∆
u
n
c t

w
it
h
u
n
c t

−
1
a
n
d
u
n
c t

−
2
,
a
n
d

∆
f
t
w
it
h

∆
f
t−

1
,

∆
f
t−

2
a
n
d
tw
o
la
g
s
o
f
th
e
u
n
em

p
lo
y
m
en
t
ra
te
.

(v
)
T
h
e
p
-v
a
lu
es

fo
r
th
e
J
-s
ta
ti
st
ic
s
a
ss
u
m
e
a
st
a
n
d
a
rd
χ
2
d
is
tr
ib
u
ti
o
n
.



US MONETARY POLICY & UNCERTAINTY: TESTING BRAINARD'S HYPOTHESIS 22

Table 3. Durbin-Wu-Hausman Tests for Exogeneity of ∆unct

In�ation Activism Unemployment Activism
(1) and (3) (2) and (4) (1) and (3) (2) and (4)

Di�. in J-stat 0.24 1.53 0.31 1.36
P-value 0.63 0.20 0.52 0.24

(i) Assuming the test size follows a χ2(1).

Finally, the in�ation variable, π̃t, is signi�cant in column (1) and (3), while
the unemployment variable, ũt , is signi�cant in column (2) and (4). In either
case, a �large� spike triggers a more activist response. Although the economic
impact is not large, the e�ect is present regardless of how I control for in�ation
and unemployment. Extra-ordinary economic situations, such as large recessions
or in�ation spikes, therefore appear, all else equal, to cause more activist policies.
This partially corroborates with the evidence of some (weak) non-linearity in the
Taylor Rule (Surico [2008] and Curkierman and Muscatelli [2008]).

I started this section assuming that monetary policy activism was endogenous
within the month. This assumption can, however, (normally) be tested. Table 3
provides the Durbin-Wu-Hausman Test for the exogeneity of ∆unct. As we can
see, ∆unct does in fact appear to be exogenous. However, in this case the test-
size follows an unknown distribution, rather than the standard χ2(1), as the use of
�generated-regressors� renders the Durbin-Wu-Hausman test invalid. Despite the
relatively large di�erences in J-stat values, I therefore choose to report TSLS results
throughout.

4.3. Robustness Analysis. In this subsection, I investigate the robustness of the
previous results along two dimensions: (1) alternative measures of activism, un-
certainty and �nancial instability; and (2), di�erent subsamples and frequency. I
demonstrate that in each instance, the basic insights from the baseline case remain
broadly intact.

4.3.1. Alternative Measures. I re-estimate equation (4.1) using di�erent measures
of monetary policy activism, uncertainty and �nancial instability. As an alternative
gauge of monetary policy activism, I consider the measure estimated in Appendix
B using real-time Greenbook data. The alternative measure of uncertainty used
is an indicator variable measuring �large spikes� in unct. Bloom [2009] argues
that large spikes in uncertainty are likely to have proportionally much larger real
e�ects due to non-linearities in the �wait-and-see� e�ects.40 Lastly, I also consider
an alternative proxy for �nancial instability, available back to January 1973: the
�Adjusted Financial Stability Index� developed by Brave and Butters [2011] and
published weekly by the Chicago Federal Reserve.41

Table 4 reports the estimates. The key result from the baseline case - that mon-
etary policy activism responds positively to increases in economic uncertainty - is
robust to the use of alternative variables. In fact, for almost all parameter esti-
mates the sign and magnitudes remain within the range of our baseline �ndings.
There are, however, some di�erences. Most importantly, the alternative measure

40The economic uncertainty measure, unct, is HP-detrended with λ = 129, 600. Absolute values
outside the threshold (±1.65 standard deviations above the mean) are coded as one. This corre-
sponds to using a ten percent two-sided signi�cance level, treating each month as an independent
observation. For more on this approach, see Bloom [2009].
41The �Adjusted Financial Stability Index� is the �rst latent factor of a set of 100 variables com-
prised of: (1) spreads between various interest rates measuring market risk-premia and liquidity
conditions; (2) surveys of the tightness of loan standards; and (3), variables measuring the size of
total banking assets and commercial deposits.
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Table 4. Alternative Measures

∆ft ∆unct Sample

Alternative ∆αj,mt

In�ation -0.027 0.244∗∗ 12/84:12/05
(0.049) (0.117)

Unemployment 0.009 -0.076 12/84:12/05
(0.034) (0.081)

Indicator unct

In�ation -0.024 0.146∗∗∗ 12/84:12/07
(0.036) (0.034)

Unemployment 0.031 -0.089∗∗∗ 12/84:12/07
(0.023) (0.022)

Alternative ∆ft

In�ation 0.051∗ 0.163∗∗ 01/73:10/10
(0.031) (0.068)

Unemployment -0.032 -0.106∗∗ 01/73:10/10
(0.022) (0.043)

(i) Estimated using TSLS, instrumenting ∆unct with unct−1

and unct2 , and ∆ft with ∆ft−1, ∆ft−2 and two lags of the

unemployment rate.

(ii) j = π, u

(iii) Residual-based Boot-strapped standard errors in parentheses using

40,000 boot-strap loops.

(iv) * p<0.10, ** p<0.05, *** p<0.01.

of unemployment activism still responds negatively to economic uncertainty, but
the estimate is no-longer statistically signi�cant. The di�erence between the e�ect
of uncertainty on the two measures of unemployment activism is in line with the
discussion in Appendix B, suggesting slightly larger discrepancies between the two
estimates of αu,mt than of απ,mt . The estimates of the impact of the alternative
�nancial instability measure are again only borderline statistically signi�cant; how-
ever, they are of the opposite sign compared to the baseline case, implying some
(weak) evidence that �nancial instability also causes a more active policy. Finally,
the sample for the estimates using the indicator uncertainty variable is shrunk to
avoid contaminating the results with a policy that reaches the zero lower bound.42

42The estimates including the recent crisis are 0.06 and -0.03 for in�ation and unemployment
activism, respectively. Both are borderline signi�cant at the ten percent level. The recent crisis
is the last time the indicator variable for uncertainty hits one; however, in this case policy cannot
become more active as it is already at the zero lower bound. Given the limited variability in
the uncertainty indicator series, as well as the limited sample, it therefore makes sense that
the standard errors will increase and coe�cient estimates decrease (in an absolute sense) when
compared to the estimates excluding the crisis.
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Table 5. Di�erent Subsamples and Frequency

∆ft ∆unct Sample
Pre-1985

In�ation 0.027 0.051 01/75:01/85
(0.026) (0.032)

Unemployment -0.021 -0.039 01/75:01/85
(0.018) (0.033)

Post-1985

In�ation 0.010 0.215∗∗ 02/85:10/10
(0.034) (0.009)

Unemployment -0.010 -0.159∗∗ 02/85:10/10
(0.022) (0.079)

Quarterly data

In�ation 0.013 0.210∗∗ Q1/85:Q3/10
(0.010) (0.101)

Unemployment -0.009 -0.128∗ Q1/85:Q3/10
(0.011) (0.065)

(i) Estimated using TSLS instrumenting ∆unct with unct−1

and unct−2, and ∆ft with ∆ft−1, ∆ft−2 and two lags of the

unemployment rate.

(ii) Residual-based Boot-strapped standard errors in parentheses using

40,000 boot-strap loops.

(iii) * p<0.10, ** p<0.05, *** p<0.01.

(iv) To make pre and post estimates comparable, the "alternative"

�nancial instability measure is used.

(v) Quarterly estimates include three ma-terms.

In sum, the key insight provided by our baseline estimates - that monetary
policy activism responds positively to changes in economic uncertainty - is robust
to alternative measures of �nancial instability and uncertainty, and broadly robust
to the alternative measure of monetary policy activism considered.

4.3.2. Alternative Subsamples and Frequency. I next explore the stability of the
estimates with regards to di�erent subsamples and the frequency of data.

In Figure 2.1, we saw that changes in US macroeconomic uncertainty where on
average larger before 1985 than after (with the obvious exception being the recent
crisis). In addition, our baseline results showed somewhat larger coe�cients on eco-
nomic uncertainty in the shorter sample [columns (2) and (4) in Table 4.1], roughly
corresponding to the Great Moderation. It is therefore interesting to see whether
the responsiveness to changes in economic uncertainty has changed from �pre-Great
Moderation� to �post-Great Moderation�. Table 5 reports the estimates.43 As we
can see, monetary policy activism appears to respond signi�cantly more to changes

43To make pre and post estimates as comparable as possible, the �alternative� �nancial instability
measure from subsection 4.3.1 is used.
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in economic uncertainty after the start of the �Great Moderation�: the coe�cient
on ∆unct is statistically insigni�cant and economically smaller in the �pre-Great
Moderation� sample. Moreover, for in�ation activism, a Quandt-Andrews Break-
point Test gives a maximum Wald F-statistic [QUF] of 8.01 in October 1989. Un-
fortunately though, the asymptotic distribution of the test-size is unknown due
to the presence of �generated regressors�, so it is di�cult to assess the statistical
signi�cance of this.44 In addition, as pointed out by Cogley and Sargent [2001],
the power of the QUF test is often very low, in particular when estimated over a
relatively small subsample. These results should therefore be viewed accordingly.
Nonetheless, the estimates are puzzling and could potentially indicate a shift in the
responsiveness of the Federal Reserve to economic uncertainty.

I complete the robustness analysis by reporting estimates of equation (4.1) using

quarterly data. As an instrument for economic uncertainty, uncQt , I again use the

lagged values uncQt−1 and uncQt−2, but this time point-sample them at the �rst
month of the quarter to reduce any endogeneity problems. Table 5 reports the
corresponding results. For both in�ation and unemployment activism, the results
are qualitatively and quantitatively similar to the baseline case. That said, �nancial
instability now appears with a positive coe�cient - as with the alternative measure
of ft - indicating that a higher degree of �nancial instability leads to a more active
policy. The dummies used in the quarterly speci�cation to account for switches in
the chairmanship of the Board of Governors are now also estimated to have a larger
impact. For instance, the dummy accounting for the switch to Ben S. Bernanke
from Alan Greenspan is estimated to be 0.265 and signi�cant at the �ve percent
level

In sum, the key insights presented in the baseline case are robust to changes in
the frequency of the data. Subsample estimates, however, suggest that the Federal
Reserve has perhaps responded more forcefully to changes in economic uncertainty
after the start of the �Great Moderation�.

5. Conclusion

This paper addresses the question: does US monetary policy activism depend
on economic uncertainty? In particular, I investigate whether US monetary policy
makers have reacted according to the Brainard Principle (stating that policy should
exhibit conservatism in the face of uncertainty) or the Hansen and Sargent Prin-
ciple (stating that policy should be more aggressive when economic uncertainty
increases). Contrary to the prescription in Brainard's [1967] seminal paper, my
estimates indicate a signi�cant Hansen and Sargent type reaction. Long-run coef-
�cients on in�ation and unemployment in a Taylor Rule increase by in between 0.1
and 0.5 in response to a two standard deviation increase in economic uncertainty,
roughly what was witnessed during the recent crisis.

To determine the e�ect of uncertainty on monetary policy activism, I follow a
three-step strategy. I �rst construct a measure of aggregate economic uncertainty
using �ve proxies and the method proposed by Giannone et al. [2008]. Second,
using a TVC-BVAR with SV, I estimate monetary policy activism. I detect sizable
variation in the responsiveness of the Federal Reserve. In particular, there appears
to be a large trend decrease in activism during the tenure of Alan Greenspan -
sometimes even touching the Taylor Principle lower-bound. Lastly, to analyze the
impact of economic uncertainty on monetary policy activism, I employ a simple
TSLS approach.

44Using - incorrectly - the Hansen [1997] tabulated asymptotic distribution gives a p-value of 0.079
(15% trimmed data). Interestingly, the maximum Wald F-statistic for unemployment activism is
not until December 1998.
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The two key insights from this analysis are: in�ation activism responds pos-
itively to economic uncertainty across all speci�cations. Moreover, this e�ect is
economically and statistically signi�cant, often implying changes in activism sim-
ilar to the average di�erence between the chairmanships of Ben S. Bernanke and
Arthur F. Burns. Unemployment activism similarly appears to respond positively
to aggregate uncertainty; however, the e�ect is across most speci�cations slightly
smaller and appears to depend more on the exact measure of activism employed.

A central limitation of this paper is the reliance on speci�c measures of activism
and uncertainty. As Anderson et al [2003] points out, detecting signi�cant evidence
of time-variation in the systematic parts of linear equations is di�cult - at least
when compared to detecting stochastic volatility - and the results presented should
be interpreted accordingly.

In closing, an important question this paper raises but does not answer is: what
type of a response to uncertainty would empirically have been better? The Hansen
and Sargent approach - or the Brainard type. In addition, central bank �experi-
mentation� as well as non-linear responses could perhaps slightly dull or amplify
the coe�cient estimates presented here. Future work should attempt to incorporate
these issues.
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Appendix A: Uncertainty Data

Below, I outline the details of the �ve proxy variables used in the construction
of the uncertainty measure. All data where the source is not explicitly mentioned
comes from the Federal Reserve Bank of St. Louis online data base (FRED).

(1) Stock-market volatility. I use the CBOE's VXO index of implied volatility
on a hypothetical S&P100 option 30 days to expiration. The VXO is available daily
from January 1986. Monthly aggregates are constructed by averaging daily obser-
vations. Pre-1986, realized monthly return volatility is calculated as the standard-
deviation of daily returns of the S&P500, normalized to the same mean and variance
as the VXO index over the period when they overlap (1986M1-2010M10). Realized
and implied volatility are highly correlated at 0.879. The US stock market was
closed for four days after 9/11; the implied volatility levels for these four days were
interpolated using the European VX1 index.

(2) GDP growth volatility. Estimated as the conditional standard deviation
from a GARCH(1,1) speci�cation of log(GDPt) regressed on its own four lags, a
constant term and a trend. The estimation sample is from 1955Q1 to 2010Q3.45

Quarterly data is interpolated to monthly frequency using a cubic spline. I also
experimented with an ARCH(1) speci�cation and with using the growth rate of
GDP instead of the level. Either way, the results appear very similar.

(3) The cross-sectional range of output growth. Calculated from the Fed-
eral Reserve Board's G17 database on monthly output growth for NAICS level 4
manufacturing, available from January 1972. Monthly output growth is computed

as: ∆yMi,t =
yMi,t−y

M
i,t−1

yMi,t−1
. The cross-sectional range of output growth is de�ned as the

interquartile range [IQR] on the panel of monthly growth rates.46

(4) Professional forecasters one-year-ahead output and unemployment
dispersion. Computed as the IQR on industrial production and nationwide un-
employment forecasts from the SPF database (Survey of Professional Forecasters
done by the Federal Reserve Bank of Philadelphia). All forecasts used are four
quarters ahead (expected) year-over-year growth rates with an average of 39 and 45
forecasters in each cross-section, respectively. The sample period is from 1968Q4 to
2010Q4. Quarterly data is interpolated to monthly frequency using a cubic spline.

(5) Producer and consumer business expectation dispersion. Calculated
from the University of Michigan Surveys of Consumers (MCSI) and the Federal
Reserve Bank of Philadelphia's Regional Business Outlook Survey, available from
January 1978 and May 1968, respectively. The consumer based measure uses the
sub-component: 'Business conditions expected during the next 12 months', whereas
the producer based uses: 'Expected business conditions six months ahead'. In both

cases, the uncertainty measure was de�ned as: uncit =
√
Iit +Di

t − (Iit −Di
t)

2,
where i = cons, prod and It denotes the fraction of respondents specifying an
increase and Dt the fraction specifying a decrease. uncit is therefore equal to the

45More speci�cally, I estimate: yt = β0 + t + β1yt−1 + β2yt−2 + β3yt−3 + β4yt−4 + εt, where
yt denotes output, εt | Ωt ∼ N

(
0, σ2

t

)
and σ2

t = α0 + α1ε2t + δ1σ2
t−1 using the Bollerslev and

Wooldridge QML-method and the BHHH-algorithm (see Bollerslev [1986]).
46Using the cross-sectional dispersion of industrial production is a common proxy for macroeco-
nomic uncertainty, see e.g. Bloom et al. [2010]. However, most authors compute the IQR across
both sub- and main-groupings (i.e. confound level 3 and level 4 data). This is avoided in the
above calculation.
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cross-sectional standard deviation of the survey responses if the increase category
is quanti�ed by +1 and the decrease category by −1.47

47See also Bachmann et al. [2010].
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Appendix B: Monetary Policy Activism: Evidence from Federal

Reserve Forecasts

In this appendix, I estimate US monetary policy activism using a time-varying
Bayesian regression [TVC-BR] with stochastic volatility [SV] on real-time data from
the Federal Reserve. The procedure adapts the Bayesian VAR techniques laid out
in the body of this paper to a single equation case. All discussions of simulation
techniques will therefore be kept to a minimum.

Consider a modi�ed, explicitly forward-looking, version of the monetary policy
rule considered in Section 3:

it = ρ(L)it−1 + [1− ρ(L)] i∗t + eMP
t(5.1)

i∗t = i∗ + φ(L)E [πt+h − π∗ | Ωt] + ψ(L)E [ut+k − u∗ | Ωt] ,(5.2)

where πt+h denotes the percentage change in the price level between periods t and
t + h (expressed in annual rates); ut+k the average unemployment rate between
periods t and t + k; and Ωt, the information set at the time. Equations (5.1)
and (5.2) specify that the monetary authorities set the target interest rate, i∗t , as a
function of the expected in�ation and unemployment gap; however, they only attain
the target rate gradually as they smooth the transition from one target rate to the
next. Combining gives:

(5.3) it = ĩ∗ + ρ(L)it−1 + φ̃(L)E [πt+h − π∗ | Ωt] + ψ̃(L)E [ut+k − u∗ | Ωt] + eMP
t ,

where ĩ∗ ≡ [1− ρ(1)] i∗, φ̃(L) ≡ [1− ρ(L)]φ(L) and ψ̃(L) ≡ [1− ρ(L)]ψ(L). Equa-
tion (5.3) can be interpreted as a purely forward-looking Taylor Rule, augmented
to include higher-order dynamics.

Monetary policy activism with regards to in�ation (απ) and unemployment (αu)
is (again) de�ned as, respectively:

απ ≡ φ̃(1)
1−ρ(1)(5.4)

αu ≡ ψ̃(1)
1−ρ(1) .(5.5)

As explained in Section 3, various approaches have been employed to estimate
(5.3). In this appendix, I follow Orphanides [2001] and Boivin [2006] - where the
latter also allows for time-variation in the coe�cient estimates - and use, as a
proxy for the Board of Governors' expectations, Et [πt+h − π∗] and Et [ut+k − u∗],
the forecasts computed by the Sta� of the Federal Reserve. These forecasts are
published a few days before the FOMC meeting and collected with a �ve year lag
in �the Greenbook�.48

Besides the issues discussed in Section 3 (the potential endogeneity in (5.3) as
well as the limited sample length), several other aspects of the Greenbook data need
mentioning. While there is very little information on how the Greenbook forecasts
have actually been constructed, it appears that from 2004 to 2005 the Federal
Reserve experimented with using Random Walk forecasts of the unemployment
rate. In addition, while the unemployment series has remained relatively unrevised
throughout the sample period that cannot be said for GDP or the GDP de�ator
(note that CPI in�ation is not consistently available and is therefore not used in the
following). From 1969 to 1991, the Federal Reserve focused on forecasting GNP,

48Reifschneider, Stockton and Wilcox [1997] provide further information on the Greenbook fore-
casts. For a thorough discussion of the properties of the Greenbook forecast errors, see Orphanides
[2002] and Romer and Romer [2004].
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while GDP was preferred in between 1991 and 2001. Finally, for the last part of the
sample, chain-weighted GDP was the preferred measure of aggregate activity. That
said, most of the changes to the historical values appear on the real side, implying,
as argued by Boivin [2006], that a spliced series of forecasts of the de�ators can be
used, although imperfectly so, as a measure of expected in�ation.

Model. To estimate (5.3), I use a TVC-BR with SV using yt = [it] as the depen-
dent variable and xt = [it−1, Et (πt+h) , Et (xt+k)]

′
as the explanatory variables.

Consider the model:

(5.6) yt = ct + x′tβ1,t + x′t−1β2,t + . . .+ x′t−pβp,t+εt, V[εt] = σ2
t

where ct denotes a time varying constant; βi,t, i = 1, . . . , p, an n× 1 vector of time-
varying coe�cients; and εt, a heteroskedastic shock with variance σ2

t . Vectorizing
the RHS coe�cients in (5.6) and stacking them in βt allows us to write the equation
as:

yt= x̃′tβt + σtet, V[et] = 1(5.7)

x̃′t =
[
1, x′t−1, x′t−2, . . . , x′t−p

]
.

The dynamics of the model parameters, βt and log(σt), are (again) assumed to
follow driftless random walks, i.e.:

βt = βt−1 + eβt(5.8)

log(σt) = log (σt−1) + eσt .(5.9)

All innovations are assumed to be jointly normally distributed with covariance
matrix given by:

(5.10) V =V

 et
eβt
eht

 =

 1 0 0
0 Vβ 0
0 0 V σ

 ,
where Vβ is a symmetric positive de�nite matrix and V σ is a strictly positive
number. The estimation of (5.7) subject to (5.8)-(5.10) is done using Bayesian
methods. All priors are selected in accordance with Section 3. To allow for the same
amount of a priori uncertainty, variance parameters for β0 are though matched to
previous estimates. Hence:

β0 ∼N
(
β̂LS, 4VALS

β

)
log
(
σ0
)
∼N

(
log
(
σ̂LS

)
, 1
)

V σ ∼ IW (2kh, 2) , Vβ ∼ IW
(

30kβVALS
β , 30

)
,

where kβ = 0.12 , kh = 0.012 and VALS
β denotes the covariance matrix of the

equivalent parameters in Section 3. For details on the simulation method used, see
Section 3.
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Figure 5.1. Monetary Policy Activism Using Greenbook Forecasts
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Monetary policy activism: median response of interest rate to a 1pp permanent increase in either the
in�ation or the unemployment rate. 16th and 84th percentiles are also depicted. Panel (a) shows
in�ation activism; Panel (b) unemployment activism; Panel (c) compares in�ation activism estimates
(median) using Greenbook forecasts (black line) with those from Section 3 (gray line); and �nally,
Panel (d) compares unemployment activism estimates using Greenbook forecasts (black line) with
those from Section 3 (grey line). Monetary policy activism estimates using Greenbook forecasts are
linearly interpolated between the FOMC meetings.

Empirical Results. Equation (5.3) is estimated using a TVC-BR with SV from
March 1969 to December 2005.49 Two lags of it are employed in the estimation;
the other variables enter without lags. Et [πt+h] is given by the Greenbook forecast
of the annualized percentage change in the GNP/GDP de�ator between period t
and t+ h, while Et [ut+k] is given by the average of the Greenbook forecasts of the
unemployment rate between t and t + k.50 I assume h = 3 quarters and k = 2
quarters, roughly in accordance with evidence from VAR analysis, cf. Christiano et
al [2001]. I initialize the priors using the post-Volcker observations. The estimation
is based on 10,000 runs of the Gibbs Sampler, discarding the �rst 2,000 to allow
for convergence to the ergodic distribution.

Figure 5.1 present the activism estimates, απt and αut . Across the overlapping
sample, the pattern of time-variation in Figure 5.1 resembles reasonably closely the
estimates discussed in Figure 3.2: both the level and the changes in the two esti-
mates of απ,mt and αu,mt roughly coincide for all periods. In fact, the estimates are

49Note that the Greenbook forecasts are not available at standard frequencies: usually there are
only eight meetings per year (prior to 1976 there were, however, monthly meetings). All data is
sampled for the months that have Greenbook forecasts.
50I again use the three month TBILL rate as my preferred measure of the policy rate.
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never statistically di�erent from each other. That said, there are some di�erences
in the median estimates; in particular in the mid-1980s for unemployment activism.
This divergence could potentially indicate either: (a) a short-coming in the VAR-
approach to approximate the structural equations governing the economy in that
period; or (b), that the potential endogeneity and �quirks� in the real-time data
contaminate the estimates relatively more in the mid-1980s. Comparing estimates
along the same sample path, the probability that απt increased in between 1977
(under the chairmanship of Burns) and 1980 (under Volcker) is 0.99, as compared
to 0.96 previously; i.e., there remains strong evidence in favor of a shift in policy
activism between the two dates. Above all though, the fact that these results using
�exogenous� expectations corroborate to such an extent with the earlier �ndings
rea�rms the conclusions of Section 3.
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Figure 5.2. Autocorrelation of draws
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Autocorrelation coe�cients at lag 5, 10 and 50. The ordering of the variables is described in the main
text.

Appendix C: Convergence Diagnostics of the Gibbs Sampler

Algorithm

This appendix evaluates the convergence of the Gibbs Sampler Algorithm in the
baseline scenario.51

To judge how well the Markov Chain mixes, Figure 5.2 shows the autocorrelation
coe�cient at lags 5, 10 and 50 for all model parameters. I order the 11,970 At

parameters �rst; the 1,710 at and log(ht) second and third, respectively; and �nally,
the 455 hyperparameters in V fourth. A high degree of autocorrelation indicates a
need to carry out more draws to achieve a sample of su�cient size to draw accurate
inference on posterior parameters. As Figure 5.2 shows, the autocorrelations decay
fairly quickly and at lag 10 remain below 0.2 for the vast majority of the parameters.

Closely related, Figure 5.3 plots (in the same order) the set of Rafetery and
Lewis [1995] convergence diagnostics assessing: (1) the minimum number of draws
required to achieve a desired degree of precision in the estimation of the poste-
rior distribution; (2) the added amount of burns required to achieve a stationary
distribution and (3), the added amount of thinning required to achieve a roughly
independent sample. I use a standard speci�cation with q, the quantile of interest,
equal to 0.025; r, the desired degree of accuracy in the estimated quantiles, equal
to 0.025; and �nally, s, the minimum probability of achieving the accuracy goal
equal to 0.95. As Figure 5.2 shows, the required number of draws in each case
remains well below the total number of draws conducted in the baseline scenario.
In addition, the suggested added number of burns is small and the thinning ratio
averages around 2.0, consistent with the relative fast decay of the autocorrelations.

As a �nal convergence check, I calculate the Ine�ciency Factors [IFs] proposed
by Geweke [1991] for the posterior estimates of the distribution of the parameters.
The IFs are the inverse of the relative numerical e�ciencies (RNEs), which provide
an estimate of the ratio of the number of draws that would be required to produce
the same numerical accuracy as if the draws presented had been made from an
i.i.d sample drawn directly from the posterior distribution. Typically, values below
25 are considered satisfactory. As Table 2 shows, for the vast majority of the
parameters this appears to be the case. That said, quite high IFs are visible for

51All diagnostics are calculated using the coda function in MATLAB, created by James LeSage.
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Figure 5.3. Raftery and Lewis' [1995] Converge Diagnostics
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Raftery and Lewis' [1995] converge diagnostics for the estimates of the posterior distribution of the
parameters. Panel (a) depicts the required number of runs in order to achieve the desired degree of
accuracy; Panel (b), the suggested added number of burns to reach the ergodic distribution; and
�nally, Panel (c), the added degree of thinning required to attain a roughly independent sample. The
ordering of the variables is described in the main text.

Table 6. Summary Statistics of the Ine�ciency Factors

Median Mean Std. dev. Min. Max. 10pct. 90pct.
V 19.21 31.85 21.61 0.89 115.82 2.05 64.26
A 15.29 19.94 4.43 6.21 26.55 9.51 22.02
h 5.16 8.65 9.56 1.35 71.74 2.13 19.74
a 6.99 9.61 19.57 2.22 192.23 5.11 9.37

Summary statistics of the ine�ciency factors of the posterior distribution of the parameters. A 4%
tapered window is used in the estimation of the spectral density at zero frequency. Variables are
denoted as in the main text.

some parameters in V, however, for all other parameters, 90% of the IFs are below
the 25 barrier.

In conclusion, considering the high dimensionality of the model, the converge
checks appear satisfactory and the MCMC algorithm appears to obtain the ergodic
distribution fairly quickly.
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