
Estimating Structural In�ation Dynamics: A Reduced

Form Solution for a Conundrum

Gregory Gadzinski�

This Version September 7, 2005

VERY PRELIMINARY

Abstract

In this paper we estimate a New Keynesian Phillips Curve (NKPC) based on a Vector

Autoregressive (VAR) model. The strategy is to consider a VAR involving the in�ation rate

and the forcing variable(s), and exploits the rational expectations cross-equation restric-

tions, that the NKPC imposes on the VAR, to estimate the structural parameters. This

methodolgy has the advantage to avoid the misspeci�cations of previous GMM and ML

results. Moreover, in light of the potential instability in the dynamics of both processes, we

also allow for time varying e¤ects for all the parameters as well as in the mean and variance

elements. We use the model to assemble evidence about the composition and evolution of

the forward and backward looking components in the Euro area and United States in�ation

series.
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1 Introduction

Is the tamed in�ation in industrialized countries an evidence of enough knowledge about in�ation

dynamics ? Given the increasing views challenging the insights of modern dynamic macroeco-

nomics, the answer is certainly no. Since Lucas critique (1976), �nding a relationship isolated

from policy e¤ect has been the holy grail of modern time economics. In the search of a process

embedding a large variety of pricing environments, the "New Keynesian" paradigm and its ten-

ants put the expectations formation process of private agents at the center of this quest, and

gave rise to the nowadays workhorse of in�ation dynamics, namely the New Keynesian Phillips

Curve.

Theoretically derived under intertemporal micro-optimatisation, the extent to which the New

Keynesian Phillips curve is able to replicate key dynamic features of empirical data, though, has

been the subject of much debate, and grown the list of the conundrums still unresolved in

applied economics. Now, as emphasized by Lucas and Sargent (1981), the question of whether a

particular model is structural is an empirical, not theoretical, one. Two main approaches have

been o¤ered to assess the degree of forward lookingness in in�ation, the �limited�information

or single equation methodology, and the �full� information or system estimation. During the

�rst years of this debate, it seemed like the estimation methods was clearly a decisive factor for

the outcome of the empirical analysis. For instance, Galí and Gertler (1999), and Galí et al.

(2001a, 2001b) found a dominant role for the forward looking component when using limited

information methods in an �hybrid�version of the Phillips curve, which in turn, was argued to

be a "good �rst approximation of in�ation" in the US and Euro area. On the other hand, using

full information methods, Fuhrer and Moore (1995) and Fuhrer (1997) present evidence on US

in�ation that seems to undermine the importance of forward-looking components as a relevant

component of in�ation dynamics.

However, it is well documented by now, that GMM estimates can be markedly biased in

small samples and subject to �weak instruments�or �weak identi�cation� issues (Stock et al.,

2002). Recently, in order to cope with these de�ciencies, Fuhrer and Olivei (2004) propose a

GMM procedure that, instead of instrumenting by means of simple linear projections on the

instruments set, uses projections that impose the dynamic constraints implied by the forward-

looking relation. This �optimal instruments� procedure is argued to be similar to maximum

likelihood estimation and indeed yield similar results as in Fuhrer and Moore (1995). Unlike

Gali et al (2001a, 2001b), though, their results are based on the output gap as the driving

variable, which is suggested to underestimate the empirical importance of the forward looking

component (see Roberts, 1997 and Jensen, 2002).
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Meanwhile, using a FIML approach, Ireland (2001) cannot reject the null hypothesis that

in�ation dynamics in the postwar U.S. are purely forward looking. The author�s method consists

of expressing the Euler equation and the VAR equations for the exogenous variables as a minia-

ture dynamic general equilibrium (DGE) system. In doing so, this technique implicitly restricts

the estimates such that all but one solution can be discarded on grounds of non-stationarity.

The problem with this method is that imposing uniqueness may provide little economic sense,

which can lead to severe misspeci�cation in case the likelihood is maximized for a combination

of parameters that implies multiple stable solutions.

Thus, as the research accumulates, it turns out that the analysis of the the degree of for-

ward lookingness can be robuslty assessed less from the perspective of model speci�cation and

methodologies, than from the point of view of identi�cation and testable restrictions.

Nevertheless, we argue in this paper that a system of equations is still the best framework for

theoretical and empirical analyses about the stability and determination of the relative weight

of forward and backward components in in�ation dynamics. However, in light of the di¢ cul-

ties in identifying the structural parameters via a classical system approach, we follow a strand

of the literature which recovers the values of these parameters using reduced form statistical

models (see Cogley and Sbordone, 2004, Kurman, 2004). Speci�cally, we use the fact that the

constrained coe¢ cients of the rational expectation solution (RES) are higher-order polynomials

in the unrestricted Euler equation parameters and VAR coe¢ cients. The strategy is to con-

sider a VAR involving the in�ation rate and the forcing variable(s), and exploits the rational

expectations cross-equation restrictions, that the NKPC imposes on the VAR, to estimate the

structural parameters. We also argue that proceeding with system estimation under constraints

is indeed necessary in some cases, since it enables to separately distinguish a role for lagged

in�ation arising from forecasting from the one arising from price-stickiness.

Besides, the identi�cation task is also hardened because of the presence of the unit root

often found in the in�ation series. In such a case, two extreme speci�cations can give equivalent

nonstationary dynamics even if the two equations are not equivalent. In this paper, we avoid

this issue via the notion of persistence. Our strategy entails the modelisation of the mean as

an I(1) exogenous in�ation target to ensure that the deviations of in�ation from such a mean

are stationary. The masking e¤ects of spurious high persistence for inference in the structural

parameters is then avoided.

Moreover, some authors have argued that changes in the level of credibility of the central

bank�s commitment to attain their objective, should have an e¤ect on the relative importance

of forward-looking and backward-looking terms in in�ation models (see Taylor, 1998, Sargent,

1999). Thus, we also allow for this possibility and describe the evolution of the law of motion
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for in�ation by the use of time-varying parameters. As the structural model involves nonlinear

cross-equation restrictions on the evolving parameters, we use the so-called Unscented Kalman

Filter. This method is built on the principle that it is easier to approximate a probability

distribution than an arbitrary nonlinear function (see Julier and Uhlmann, 1996). As such, this

technique is superior to the Extended Kalman Filter since it does not require to linearize the

measurements and evolution models using Taylor series expansions. The algorithm is coupled

with the simulated annealing optimisation algorithm of Go¤e (1996) for the optimisation of

the �xed parameters, since it proved to be more robust than traditional numerical gradient

algorithms.

The remainder of the work provides the relevant theory underlying this paper in section 2.

Section 3 provides an explanation of the econometric methodology. Section 4 discusses the data

used. Section 5 reports the empirical evidence. Finally, section 6 closes with a summary and

some conclusions.

2 Theoretical Consideration

We �rst consider the hybrid Phillips curve equation de�ned as follows:

�t = fEt (�t+1) + b�t�1 + �mct + ut (1)

Where �t denotes the in�ation rate at time t, Et (�t+1) is the expectation conditional on

time-t information of in�ation at time t+1, mct is the real marginal cost (measured as deviation

from steady state). The studies by Rotemberg (1982), Roberts (1995), Fuhrer and Moore (1995),

Yun (1996), and Gali and Gertler (1999) are in�uential examples of the derivation of the forward

looking Phillips curve. The addition of the backward looking component has been �rst motivated

empirically, before being legitimised theoretically on the basis of several possible grounds. For

example, Roberts (1997, 2001) and Ball (2000) assume that a fraction of agents use adaptive

expectations, while Galí and Gertler (1999) assume that some �rms have a non rational rule of

thumb, which uses past in�ation to set the optimal price. Without relaxing the assumptions of

rational expectations but with frictions on price adjutment, the process may also be characterised

as an hybrid Phillips curve (see Kozicki and Tinsley 2002).

Even though forming the basis for many empirical studies, the above speci�cation is most

of the time linearized around a constant, which represents the long-run anchor for in�ation

expectations (steady-state in�ation rate) and is assumed to equal zero. The error term ut is
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modelled as an i.i.d process or as a martingale di¤erence sequence with respect to the available

information set, i.e. ut is assumed to be a contemporiously and serially uncorrelated white noise.

Di¤erent interpretations are provided in the literature for this term : a cost push shock, a

measurement error characterizing prices and/or real marginal costs, a quantity re�ecting di¤er-

ences in the information set of the economic agent and the econometrician, or more simply a

term capturing deviations from the theory (Kurmann, 2004).

As the estimation by classical equation (for example OLS type of regression) has long been

proved to be biased, it is now common practice to use either the Generalized Method of Moments

(GMM) or the Maximum Likelihood (ML) approach. However, as pointed out by Nason and

Smith (2004), identi�cation may be easier in the system context than in the GMM. The lack

of instruments or the problem of weak instruments is problematic for the estimation since they

lead to GMM point estimates, hypothesis tests, and con�dence intervals that are unreliable.

Moreover, one should not forget that the existence and nature of a stationary solution remains a

system property, implying that statements about the stationary properties of the rate of in�ation

hinges as importantly on the properties of the variables causing in�ation.1As a matter of fact,

the identi�cation of the hybrid NKPC (nature of the solution, backward or forward) is indeed

closely intertwinned with the nature of the driving variable process. To demonstrate this point,

let�s take a simple example where the Euler equation is augmented with a VAR(1) equation

characterising the forcing variable process:

mct = �mmmct�1 + �m��t�1 + "1t (2)

We shall note that we are agnostic about whether in�ation Granger-cause marginal cost, as

every econometrician should be when studying the behavior of two interacting variables.

Let�s write now the reduced form solution for in�ation as:

�t = ����t�1 + ��mmct�1 + "2t; (3)

In this case, the coe¢ cient b on �t�1 re�ects not only the structural parameter in equation

(1), but also the forecasting rule for the forcing variable. For example, b = 0 does not imply that

��� = 0:
2Consequently, an investigator who incorrectly assumes that mct is strictly exogenous

will deduce incorrect (i.e., biased) values of f and b , when performing unconstrained system

1Now we shall note that even if GMM methods can be seen as single estimation method, the requirements

underlying its e¢ ciency, such as the order and rank conditions, are intrinsically dependent on the properties of

the forcing variable, through the choice of the instruments.
2This result is also based on Sargent (1987, chapter XI, part 24), who showed the relationship between strict

exogeneity � in the classic terminology of Engle, Hendry and Richard (1983) - and Granger-causality.
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estimation. Now, we know that the structural and reduced form parameters are linked each

other by the following two equations:

��m � f � (��m � �mm + ��� � ��m) = � � �mm (4)

��� � f � (��m � �m� + ��� � ���)� b = � � �m� (5)

In most of the studies (see for instance Fuhrer and Moore, 1995, Jondeau and Le Bihan, 2003),

the system is estimated by FIML, without imposing the necessary identi�cation restriction,

causing the parameters to be biased. Moreover, these same studies do not consider the properties

of the system, which may also have drastic consequences on the estimation. To study the

properties of the system, the latter can be cast in its standard second linear di¤erence form

following the early work of Blanchard and Kahn (1980):

EtYt+1 = A:Yt + C:Xt; (6)

where we have :

EtYt+1 =

0B@
�t+1
mct+1
�t
mct

1CA ; A =

0BB@
��1F ��1F � ��1F b 0

�m� �mm 0 0

1 0 0 0

0 1 0 0

1CCA ; (7)

C = I4 ; X =

0BB@
��1F ut
"1t
0

0

1CCA
It is well known that (7) has a unique stable rational expectations solution, if and only if the

number of non-predetermined variables m in Yt (one in our case, Et�t+1) equals the number of

generalized eigenvalues h of (7) with modulus larger than one. If h > m; then there is no stable

solution, whereas if all eigenvalues lie inside the unit circle (h = 0) there is an in�nity of stable

solutions. The generalized eigenvalues are given by the following polynomial equation:

f �
4 + (�1� f :�mm) �3 + (b + �mm + �m��) �2 � (�mm b) � = 0 (8)
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By de�nition, we have one generalized eigenvalue such that j�1j = 0 < 1. The question of

whether the system has a unique stable solution therefore boils down to whether the combination

of the parameters f , b, �; �m�, �mm is such that j�2j < 1 and j�3j < 1, while at the same time

and j�4j > 1 . If this is indeed the case, then forward iteration allows to eliminate the unstable

eigenvalues, and implies a unique and stable solution.

It is then evident, from (8), that the feedback parameters, �m�, �mm; a¤ect the roots proper-

ties of the system (see Fanelli, 2005). This shows then that in the presence of feedbacks from the

in�ation to the driving variable, it is not clear whether the NKPC can be reconciled either with a

non-explosive in�ation process or multiple stable solutions, without constraining the parameters

opportunely.

2.1 Reduced Form and Cross Equation Restrictions

As pointed out by Sims (2002), algebrically, non-uniqueness or non-existence can arise because

certain linear combination of Yt are unrestricted by the matrix A.3Classical numerical estimation

does not deal with this issue though. What lies behind the use of the ML is the restriction of

the parameter space to regions where indeterminacy does not occur. As long as the combination

of the parameters that maximizes the likelihood implies a unique stable solution, the inequality

constraints do not bind and thus, imposing uniqueness has no in�uence on the ML estimation.

However, the ML estimates may as well be located in a region of the parameter space with more

than one stable solution. The inequality constraints imposed by the uniqueness condition bind

and prevent the ML estimation from reaching its true maximum. Concretly, in our example,

this means that there is not only one mapping from the structural parameters to the reduced

form parameters. Genuine FIML estimation simply means constraining the estimation whereas

constraining the equation as (4) and (5) is the solution.

To circumvent the multiplicity problem, Kurman (2004) provides a simple solution, exploiting

the restrictions in (4) and (5), the author remarks that expressing the VAR coe¢ cients for

the forcing variable mct as a function of the structural parameters and the coe¢ cients of the

remaining VAR equations provides a unique mapping from the structural parameters and the

VAR coe¢ cients of the endogenous variables.

Hence, rewriting the cross-equation restrictions as explicit solutions to the VAR coe¢ cients

of the forcing variable altogether both solves the identi�cation problem and circumvents the

multiplicity problem. Moreover, as the direct estimation of the structural equations still remains

3As described by Sims (2000), the second source of uniqueness may arise because the model describes expec-

tations of endogenous variables rather than the variables themselves.
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a problematic issue, we exclude the structural New Keynesian Phillips curve from the system

and instead carry out the estimation with the reduced from given in (3).

As long as the rational expectations solutions of the variables in the Euler equation have a

state-space representation, their dynamics can be described by an in�nite-order VAR process that

does not contain any other variables. Moreover, using a VAR approximation instead of a more

structural model, such as an Euler like-equation, to describe the dynamics of the forcing variable

has the advantage that the estimation of this structural equation is not conditioned on other

fundamental assumptions about the economy. Making inference on the structural parameters,

or on the structural parameters of the forward counterpart, namely the reduced form, implies no

loss of information if the parametric mapping between two representations is taken into explicit

acute.We assume in the �rst place that the dynamics of the respective real marginal cost and

in�ation are well approximated by a bivariate VAR(1) process in the two variables.4The rational

cross equation restrictions are then given by (4) and (5). The system has a single solution in the

np coe¢ cients of the VAR equations for in�ation and the forcing variable of the hybrid NKPC

and can expressed as:5

 �t = ����t�1 + ��mmct + "1t

mct =
��m � f � ��� � ��m

� + f � ��m
mct�1 +

��� � f � �2�� � b
� + f � ��m

�t�1 + "2t

!
(9)

Proceeding with system estimation under constraints enables to separately distinguish a role

for lagged in in�ation arising from forecasting from the one arising from price-stickiness. Con-

straining the system as described above, i.e matching appropriately the reduced form solution

with the structural form, will shed the light on the importance of backward and forward com-

ponents6 .

4Previous studies report that despite the real marginal cost intrinsic persistence, there is no strong evidence

of higher-order dynamics (see Nason and Smith, 2004 and Kurman, 2004) for the U.S. We argue then that this

assumption is not too restrictive. However, we intend, in a second draft, to extend the analysis and involve

multiple leads and lags of in�ation in the NKPC (as in Cogley and Sbordone, 2004) which would lead to di¤erent

cross equation restrictions.
5A non-structural VAR approach is used where the error terms of the model are not serially correlated.

Moreover, we do not follow the New Keynesian Trinity Model (NKTM) by incorporating a monetary policy

function. Recently Cho and Moreno, 2002, found the whole NKT model to be inconsistent with their data. The

authors acknowledge that this might due to the fact that the Taylor rule does not describe accurately the way

the Fed conducts monetary policy.
6Cogley and Sbordone (2004), Sbordone (2002 and 2003a) minimizes the distance between the model predicted

path and the actual path of price level to select the parameters of the Phillips Curve. Rotemberg and Woodford

(1997), Christiano, Eichenbaum and Evans (2001), and Boivin and Giannoni (2003) estimate general equilibrium

models by minimizing the distance between the model-based impulse responses and the estimated VAR responses
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In the next section, we elaborate on a set of issues that we believe to be relevant for the

identi�cation and estimation of the NKPC.

2.2 Model (Mis)Speci�cation

Another issue arises from the presence of autocorrelation in the error term of (1) often found

in empirical studies. Is the serial correlation an intrinsic feature of the New Keynesian Phillips

Curve, or on the contrary, a symptom of more general model misspeci�cation ? The overriding

question is whether the New Keynesian Phillips curve equation when viewed as a statistical

model, give rise to valid inference about the signi�cance of the the forward and backward com-

ponent. Using the Calvo-Rotemberg forward looking speci�cation, the tenants of the NKPC

tacitly assumes that serial correlation in the residuals is symptomatic of serial correlation in the

true disturbances. In this set up, past in�ation may appear to be important for determining

current in�ation, only because the shocks in the economy are positively correlated. They tend

then to attribute the properties of strong autocorrelation to the error term in order to match

the inertia found in tha data. However, econometrically speaking, this may not be commend-

able, since the underlying cause of the residual misspeci�cation may be quite di¤erent, caused

by omitted variables or an ill-founded functional form.7On the other hand, the tenants of the

traditional Phillips curve argue that all of the underlying correlation is due to the backward

looking component, leaving then no room for any substantial correlation in the residuals. How-

ever, it is highly di¢ cult to get rid of the serial correlation in an hybrid Phillips curve since this

correlation may stem from multiple reasons. The use of the VAR speci�cation as modelled in

(7) permits to avoid the de�ciencies of the NKPC estimation, since the reduced form, by nature,

can more easily deal with correlated residuals. Accordingly, we augment (3) and incorporate

lagged di¤erenced variables a la Dickey Fuller. Equation (3) becomes:

�t = ����t�1 + ��mmct�1 + ��1 4 �t�1 + :::++��p 4 �t�p + "2t; (10)

Overall, this section echoes the voice of the previous part, and reinforces the view that, given

the di¢ culties of the identi�cation via direct estimation, it may be highly advisable to estimate

a reduced form in a restrained fashion, embedding the structural parameters.

to monetary policy shock.
7 In this example, we omit that the error in the variables may also be a source of misspeci�cation.
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2.3 Anchor Expectations

One last source that proved to in�uence the properties of the lag dynamics is the shifts in the

long run anchor of agents�in�ation expectations. As shown by Erceg and Levin (2003), learning

about shifts in the policy target may be another source of persistence in the in�ation process.

Within the context of price stability, long-run in�ation expectations should converge to the

perceived in�ation target of monetary policy, or the in�ation target if known and credible.8

Besides, as recently expressed by the In�ation Persistence Network hosted by the ECB,

in�ation persistence refers to the tendency of in�ation to converge slowly (or sluggishly) towards

its long-run value following shocks of di¤erent nature. If one follows that de�nition, it is explicitly

assumed that a good de�nition of the long run value is crucial in the assessment of in�ation

persistence (see also Marques, 2004, and Gadzinski, 2005).

We shall recall, though, that this perceived target or the long run value tend to incorporate

small positive in�ation rates9 . Consequently, imposing the assumption that the long-run anchor

for in�ation expectations is zero either in a reduced form or the structural form is empirically

unreasonable. The constant-zero assumption on the in�ation expectations anchor is likely to lead

to particularly misleading empirical results if the steady-state in�ation rate changed within the

sample. As a matter of fact, as shown by several authors (see Levin and Piger (2004), Gadzinski

and Orlandi (2004), stationary series witnessing structural break(s) are often mistaken for I(1)

processes, an empirical fact that exaggerates the degree of persistence in the series. Empirical

evidence suggests that there have been shifts in the conditional mean of the in�ation process.

We follow then this strand of the literature and model the mean process in order to take into

account its potential source of persistence. The way of accounting for shifts in the steady-state

in�ation is examined in the next section among the general set up of our empirical analysis.

3 Estimation Method

On the top of the questions raised above, come also to play the debate on time varying para-

meters. Has the persistence of in�ation changed over time, as suggested by Cogley and Sargent

(2004) and Gadzinski (2005) ? Has the weight on the forward looking component increased over

time ?
8Under less optimistic but perhaps more realistic assumptions, or with non explicit in�ation target, the per-

ceived in�ation value may depart from its long run value either way, which in turn may depend on the combination

of the degree of transparency and credibility of the monetary authorities.
9No central banks in the world target a zero in�ation rate. Moreover, the perceived in�ation target is often

found to overestimate the o¢ cial target (see Kozicki and Tinsley 2002).
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The time varying properties of the in�ation process have been challenged a plethoria of times

in the literature. While estimating a reduced form relationship, we ought to consider a time

varying speci�cation. Kalman �ltering is used to describe the evolution of the law of motion

for in�ation as it enables to take on board all the points studied in the preceding sections.

However, the equations in (9) involve nonlinear restrictions so that the Kalman �lter needs

to be augmented to deal with this nonlinearity. One of the straightforward extensions is the

Extended Kalman Filter. The EKF is a minimum mean square error estimator based on the

Taylor series expansion of the nonlinear function around the states estimates. However, because

the EKF only uses the �rst order terms of the Taylor series expansion, it often introduces large

errors in the estimates. This is especially evident when the models are highly nonlinear, the

local linearity assumption breaks down and the e¤ects of the higher order terms of the Taylor

series expansion become signi�cant. To deal with this issue, a new �lter has been proposed: the

Unscented Kalman Filter (UKF). Unlike the EKF, the UKF does not approximate the nonlinear

process, but uses the true nonlinear models and rather approximates the distribution of the state

random variable. This technique deterministically selects a set of sample points which completely

capture the prior mean and covariance of the random variables accurately. This set of points is

propagated through the nonlinear function, and only then the true posterior sample mean and

covariance are calculated via the Kalman gain. Let�s consider the following multidimensional

normal state-space model:

Yt = h(�t; �t) = �t + g(�t):Yt�1 + "t ; "t � N(0; �2") (11)

�t = �t�1 + "�;t ; "�;t � i:i:d:N(0; �2�) (12)

�t = �t�1 + "�;t ; "�;t � i:i:d:N(0; �2�) (13)

Where Yt = [�t mct] and h : Rr �! R2 includes the linear and nonlinear functions of the

parameters, ���, ��m, f , b, � de�ned in (9). All these time varying parameters as well as the

time varying perceived in�ation target �t can be represented as driftless random walks.

The �rst equation describing the in�ation process in (9) is fully linear in its variables, whereas

the equation describing excess demand is nonlinear in all the coe¢ cients above. To deal with the

nonlinear component of g, we use the UKF algorithm that updates the mean and the covariance

to the posterior distribution of the states as follows:

1. Initialize with
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x0 = E[x0] (14)

P0 = E[(x0 � x0)((x0 � x0)T ] (15)

xa0 = E[xa] = [xT0 0 0]
T (16)

P0 = E[(x0 � x0)((x0 � x0)T ] =

24P0 0 0

0 Q 0

0 0 R

35 (17)

where xt = [�t �t]:

2. For t 2 f1; ::::Ng;

a) Calculate sigma points

�at�1 = [x
a
t�1 xat�1 �

q
(n+ �)P at�1]

b) Time update:

�atjt�1 = �at�1 + �
v
t�1

xtjt�1 =

2naX
i=0

W
(m)
i �xi;tjt�1

Ptjt�1 =

2naX
i=0

W
(m)
i [�xi;tjt�1 � xtjt�1][�xi;tjt�1 � xtjt�1]T

tjt�1 = h(�at�1; �
v
t�1)

ytjt�1 =

2naX
i=0

W
(m)
i xi;tjt�1

c) Measurement update equations:
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Pytyt =

2naX
i=0

W
(c)
i [xi;tjt�1 � ytjt�1][xi;tjt�1 � ytjt�1]T

Pxtyt =

2naX
i=0

W
(c)
i [�xi;tjt�1 � xtjt�1][xi;tjt�1 � tjt�1]T

Kt = PxtytPytyt

xtjt�1 = xtjt�1 +Kt(y � ytjt�1)

Ptjt�1 = Ptjt�1 �KtPytytKt

where � is a composite scaling parameter, na = nx + nv + nn; R is the measurement noise

variance covariance matrix, K is the Kalman gain and Wi the weights associated with the sigma

points (see appendix 1 for further details). Note that no explicit calculation of the Jacobians or

Hessians are necessary to implement the algorithm. It generates much accurate results than the

EKF and in particular it generates much better estimates of the covariance of the states (since

the EKF seems to underestimate this quantity).

The matrix, Q represents the variance-covariance matrix, which is set to be time invariant in

the above speci�cation. However, several authors including Sims (2001), Stock (2001) Bernanke

and Mihov (1998), Kim and Nelson (1999) pointed to evidence that VAR innovation variances

have changed over time, which might in turn exaggerate the time variation in �t. There is much

evidence to support a positive relation between the level and variance of in�ation. As such, just

like a mispeci�cation of the level may a¤ect the degree of persistence, so will a mispeci�cation of

the variance. A model with constant � and drifting Q would attribute a high in�ation variance to

an increase in innovation variances, while a model with drifting � and constant Q would attribute

it to an increase in shock persistence. The evidence on in�ation persistence without allowing

time variation in the variance may be then subject to an artifact of model mispeci�cation, as

shown in Gadzinski (2005). To account for this, we follow Harvey, Ruiz and Sentena (1992) and

include the error term in the state equation. The state space representation considered for the

estimation is augmented as follows:

h �t
mct

i
=

�
1 �t�1 1

1 mct�1 1

�24 �t

gi(�t)
"t

35+
24 Pk�1

j=1 �i 4 �t�jPl�1
j=1 �i 4mct�j

35 ; (18)

where we add to the system (18), the representation of the error terms de�ned by:
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h "�;t
"mc;t

i
� N

 �
0

0

�
;

"
�2"�;t 0

0 �2"mc;t

#!
; (19)

where �2";t = [�
2
"�;t �2"mc;t

] is given by:

�2";t = a0 + a1�
2
";t�1 + a2"

2
t�1: (20)

In order to process with the Kalman �lter, we need the "2t�1 term in order to calculate �2";t.

As in Harvey et al, the term is approximated by E("2t�1 j  t�1), where  t�1 is the information

up to time t� 1.

With

"t�1 = E("t�1 j  t�1) + ("t�1 � E("t�1 j  t�1)); (21)

we have:

E("2t�1 j  t�1) (22)

= E("t�1 j  t�1)2 + E(("t�1 � E("t�1 j  t�1))2) (23)

Where E("t�1 j  t�1) is obtained from the last element of �̂t�1jt�1, and its mean squared

error E(("t�1 � E("t�1 j  t�1))2 is given by the last diagonal element of Pt�1jt�1.

4 Empirical Results

Figures 1 and 2 display the results for the HICP Euro area and CPI United States respectively.

First, our results show that at any point in time the degree of forward lookingness is dominant

both in the United States and Euro area. This echoes the results by Gali, Gertler, 1999 and

Gali, Gertler and Lopez-Salido, 2001. As for the Euro area, the coe¢ cient on the forward looking

term remains stable at a value of 0.5 till it suddenly shoots up to the value of 1 in 1979 and

then stabilises thereafter, implying the acceptation of the genuine version of the New Keynesian

Phillips curve from this date on. The coe¢ cient for the US increases slightly till 1975 Q4 and

then peaks up to reach 0.8 in 1976 Q4. Then, the coe¢ cient continues to vary over time but
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stay in a narrow band while accepting the pure New Keynesian Phillips curve only on a few rare

occasions.

Unlike most of the studies, we did not impose the constraint f + b + 1. Consequently, the

coe¢ cient on the backward looking term cannot be induced from the values of f . Moreover,

contrary to the previous studies using a system approach, we allow the �rst lag of in�ation

to Granger-cause the marginal cost. Now, this implies that the coe¢ cient b on �t�1 re�ects

not only the structural parameter in equation (1), but also the forecasting rule for the forcing

variable. This double signi�cation may then explain the extra volatility and the negative values

taken by this coe¢ cient for the Euro area. The coe¢ cient b representing "intrinsic persistence"

declines from the beginning and becomes non signi�cant from 1979 onward. On the contrary,

we note the relative stability of this coe¢ cient for the United States, hoovering around zero

after 1980. This casts some doubts about the relevance of the lagged in�ation in forecasting the

marginal cost for the US, in accordance with previous studies (see Nason and Smith, 2004).

Previous studies �nd a clear mapping between the monetary policy regime and the distribu-

tion of the persistence parameter (see Gaspar, Smets and Vestin, 2004). However, the fact that

the rise in the degree of forward lookingness and the decline in persistence occured early in our

sample casts some doubts about the sole dominance of the monetary policy in the determination

of these coe¢ cients.

Overall, reconciling the results of a time varying reduced form including time varying mean

and variance, with a time invariant structural process is not possible according to our �rst results.

Moreover, the bigger weight of the forward term seems warranted even when the expectations

remain at a high level, which may in turn imply that not only the stance of the monetary

authorities does indeed in�uence the degree of forward lookingness. Nevertheless, we should

note that a stable monetary regime implies the stabilisation of the backward component to a

low level.

Looking at the structural coe¢ cient linking the marginal cost and in�ation, we �rst note that

the latter remains fairly stable over time, with some variability only at the end of the sample.

The pattern of the coe¢ cient is strinkingly similar between the US and Euro area whereas the

latter witnesses some lower values along the sample. An interpretation of this evidence is that

the in�ation process in the EA is subject to a higher degree of rigidity, possibly due to a less

competitive environment, more extensive price regulation or other formal or informal constraints

on price setters. This interpration is indirectly con�rmed by the analyses of the degree of product

market regulation and competition conducted by the OECD, that clearly points to the existence

of a less e¢ cient price setting mechanism in most European countries, relative to the US.

For both countries, the coe¢ cients starts declining at the end of the sample to reach its all
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time minimum around 2001. This decline is clearly visible in its reduced form counterpart, with

a clear downward drift starting in the beginning of the nineties, which points toward a change

in the in�ation-output gap trade-o¤ over time.

5 Conclusion

To be written

6 Appendix

The Unscented Kalman Filter proceeds as follows for the calculation of sigma points. A set

of 2nx + 1 (nx is the dimension of x) weighted samples or sigma points Ŝi = fWi; �ig are

deterministically chosen so that they completely capture the true mean and covariance of the

prior random variable x. A selection scheme that satis�es this requirement is:

�0 = x

�i = x + (
p
(nx + �)Px)i i = 1; ::; nx

�i = x � (
p
(nx + �)Px)i i = nx + 1; ::; 2nx

W
(m)
0 = �=(nx + �) � = �2( nx + �)� nx

W
(c)
0 = �=(nx + �) + (1� �2 + �)

W
(m)
i = W

(c)
i = 1=f2(nx + �)g i = 1; :::; 2nx

The parameter � is a scaling parameter, its value is not critical, but to guarantee positive

semide�niteness of the covarance matrix, we choose � � 0: � controls the "size" of the sigma

point distribution and should ideally be a small number to avoid sampling non local e¤ects when

the non linearities are strong. � is a non-negative weighting term which can be used to control

the error in the kurtosis which a¤ects the "heaviness" of the tails of the posterior distribution.

For a gaussian prior, the optimal choice is � = 2:
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Euro area HICP Results
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US CPI Results
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